Article Text

Original research
Computed tomography aortic valve calcium scoring for the assessment of aortic stenosis progression
  1. Mhairi Katrina Doris1,
  2. William Jenkins1,
  3. Philip Robson2,
  4. Tania Pawade1,
  5. Jack Patrick Andrews1,
  6. Rong Bing1,
  7. Timothy Cartlidge1,
  8. Anoop Shah1,
  9. Alice Pickering1,
  10. Michelle Claire Williams1,3,
  11. Zahi A Fayad2,
  12. Audrey White1,
  13. Edwin JR van Beek1,3,
  14. David E Newby1,
  15. Marc R Dweck1
  1. 1 The University of Edinburgh Centre for Cardiovascular Science, Edinburgh, UK
  2. 2 Icahn School of Medicine at Mount Sinai BioMedical Engineering and Imaging Institute, New York, New York, USA
  3. 3 Edinburgh Imaging, The University of Edinburgh-The Queen's Medical Research Institute, Edinburgh, UK
  1. Correspondence to Dr Marc R Dweck, The University of Edinburgh Centre for Cardiovascular Science, Edinburgh EH16 4SB, UK; marcdweck{at}hotmail.com

Abstract

Objective CT quantification of aortic valve calcification (CT-AVC) is useful in the assessment of aortic stenosis severity. Our objective was to assess its ability to track aortic stenosis progression compared with echocardiography.

Methods Subjects were recruited in two cohorts: (1) a reproducibility cohort where patients underwent repeat CT-AVC or echocardiography within 4 weeks and (2) a disease progression cohort where patients underwent annual CT-AVC and/or echocardiography. Cohen’s d-statistic (d) was computed from the ratio of annualised progression and measurement repeatability and used to estimate group sizes required to detect annualised changes in CT-AVC and echocardiography.

Results A total of 33 (age 71±8) and 81 participants (age 72±8) were recruited to the reproducibility and progression cohorts, respectively. Ten CT scans (16%) were excluded from the progression cohort due to non-diagnostic image quality. Scan-rescan reproducibility was excellent for CT-AVC (limits of agreement −12% to 10 %, intraclass correlation (ICC) 0.99), peak velocity (−7% to +17%; ICC 0.92) mean gradient (−25% to 27%, ICC 0.96) and dimensionless index (−11% to +15%; ICC 0.98). Repeat measurements of aortic valve area (AVA) were less reliable (−44% to +28%, ICC 0.85).

CT-AVC progressed by 152 (65–375) AU/year. For echocardiography, the median annual change in peak velocity was 0.1 (0.0–0.3) m/s/year, mean gradient 2 (0–4) mm Hg/year and AVA −0.1 (−0.2–0.0) cm2/year. Cohen’s d-statistic was more than double for CT-AVC (d=3.12) than each echocardiographic measure (peak velocity d=0.71 ; mean gradient d=0.66; AVA d=0.59, dimensionless index d=1.41).

Conclusion CT-AVC is reproducible and demonstrates larger increases over time normalised to measurement repeatability compared with echocardiographic measures.

  • aortic stenosis
  • cardiac computer tomographic (CT) imaging
  • echocardiography
https://creativecommons.org/licenses/by/4.0/

This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Supplementary materials

  • Supplementary Data

    This web only file has been produced by the BMJ Publishing Group from an electronic file supplied by the author(s) and has not been edited for content.

Footnotes

  • Twitter @imagingmedsci, @MarcDweck

  • MKD, WJ, DEN and MRD contributed equally.

  • Contributors All authors contributed to the work described in the article. MKD and WJ collected data, analysed and interpreted results and drafted the manuscript. TP, JPA, TC, AP and AW collected and analysed data. PR, AS and RB contributed to scientific content, data analysis and interpretation. MRD and DEN contributed to the design, planning and conduct of the study and critically revised the final manuscript. MCW, EJRvB and ZF critically revised and approved the manuscript content. MKD, WJ and MRD are responsible for overall content.

  • Funding This work was supported by the British Heart Foundation (FS/10/024). PMR is supported by NIH grant R01 HL071021. WSAJ, MKD ATV, TAP, MRD, MCW and DEN are supported by the British Heart Foundation (SS/CH/09/002/2636, FS/17/79/33226, FS/12/84/29814, PG12/8/29371, FS/14/78, FS/10/026, FS/14/78/31020, CH/09/002). DEN is also supported by the Wellcome Trust (WT103782AIA). The Wellcome Trust Clinical Research Facility and the Clinical Research Imaging Centre are supported by NHS Research Scotland (NRS) through NHS Lothian. MRD is the recipient of the SIr Jules Thorn Award for Biomedical Research JTA/15.

  • Competing interests None declared.

  • Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

  • Patient consent for publication Not required.

  • Ethics approval The study was approved by the Scottish Research Ethics Committee and performed in accordance with the Declaration of Helsinki. All patients provided written informed consent.

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Data availability statement Data are available on reasonable request. All data relevant to the study are included in the article or uploaded as supplementary information. Deidentified participant data are available on reasonable request by contacting the corresponding author (marc.dweck@ed.ac.uk).

Linked Articles