SEX- AND AGE-DIFFERENCES IN NATIVE T1 RELAXATION TIMES IN HEALTHY ADULTS AT 1.5 AND 3.0 TESLA

Background Limited information is available on sex differences in myocardial T1 relaxation times over age ranges. We used cardiac magnetic resonance (CMR) imaging at two field strengths to assess myocardial T1.

Methods Healthy adults underwent CMR at 1.5 Tesla (T) (Avanto) and 3.0 T (Verio). T1 maps were acquired in three short axis slices, using an optimised MOLLI investigational prototype sequence (Siemens Healthcare WIP 448). Global mean T1, in milliseconds (ms), was calculated from evaluable regions-of-interest using 16-segment model.

Results 84 volunteers (43 male) underwent scans 1.4 ± 1.4 days apart. Because of artefacts related to cardio-respiratory motion and susceptibility effects, 47 (3.9%) segments were excluded at 1.5 T and 81 (6.3%) segments at 3.0 T, with a preponderance occurring at the distal slice.

Age-related decrease in T1 was observed in females, whereas male T1 remained reasonably constant (Figure 1 and Table 1). At 1.5 T, amongst those <40 years T1 was higher for females (961.3 ± 19.3 ms) than males (932.0 ± 22.8 ms, p < 0.001), whereas there was no difference in those ≥60 years (937.2 ± 28.7 vs. 934.3 ± 24.3 ms, respectively, p = 0.807). Results were similar at 3.0 T; female T1 was higher at <40 years (1151.0 ± 39.3 ms vs. 1124.3 ± 31.6 ms, p = 0.087), but not at ≥60 years (1151.0 ± 39.3 vs. 1124.3 ± 31.6 ms, p = 0.087).

Regression analysis shows that at 1.5 T average T1 decreases by 5.13 ms for each additional decade (p = 0.038). An identical trend was observed at 3.0 T, with regression coefficient –0.564 ms/year approaching statistical significance (p = 0.064).

Conclusions In healthy adults, sex difference in global myocardial mean T1 relaxation times are observed amongst younger. This pattern is consistent across CMR field strengths. Pre- vs. post-menopausal differences in myocardial structure and function of females may explain these differences and this possibility merits further assessment.
Methods 427 subjects with a wide range of health and disease were divided into derivation (n = 214) and validation (n = 213) cohorts (Table 1 for patient characteristics). All subjects underwent T1 mapping with ShMOLLI at 1.5 Tesla for ECV quantification. Venous blood for Hct was obtained prior to scanning with 44 patients having a repeat Hct within 6 h.

ECV was calculated as: ECV = (Δ[1/T1\text{myo}] / Δ[1/T1\text{blood}]) * (1-hematocrit).

Synthetic Hct was approximated from the linear relationship between Hct and native T1\text{blood}, and used to calculate synthetic ECV. Histological validation was performed on 18 patients with severe aortic stenosis (age 71 ± 10 years, 78% male). ECV was compared with collagen volume fraction from intra-operative biopsies taken during surgical valve replacement.

Results In the derivation cohort, native T1\text{blood} and Hct showed a linear relationship (R² = 0.45; p < 0.001, Figure 1). This was used to derive synthetic Hct = 0.88 – (T1\text{blood}/3240). Synthetic ECV correlated well with ECV (R² = 0.99; p < 0.001). These results were maintained in the validation cohort. Test:retest variability of haematocrit was higher than expected (n = 44, variability 10% with Hct:Hct R² = 0.86).

Synthetic Hct showed a linear relationship (R² = 0.45; p < 0.001). This was used to derive synthetic Hct = 0.88 – (T1\text{blood}/3240).

Conclusion Synthetic ECV allows instantaneous non-invasive quantification of the myocardial extracellular space without blood sampling. Inline application of synthetic ECV may be an attractive alternative in clinical practice.

Abstract 29 Figure 1 Correlation between T1 blood and haematocrit. In the derivation cohort (n = 214), native T1 blood and hematocrit (Hct) showed a linear relationship (R² = 0.45; p < 0.001). This was used to derive synthetic Hct = 0.88 – (T1\text{blood}/3240).

Abstract 30 Figure 1 Comparison of atheroma score at baseline, 6 months and 3 years. Visit 1 = Baseline, Visit 2 = 6 months, Visit 3 = 3 years. T-bars represent 95% confidence intervals.

Conclusion Whole body contrast enhanced MRA can quantify and monitor atherosclerosis progression at 3 year follow-up even in a small cohort.

Whole Body Contrast Enhanced MRA Can Quantify and Monitor Atherosclerosis Progression

30

Abstracts

Heart 2015;101(Suppl 2):A1–A19

A17