Abstract 16 Figure 1 MAPSE measurements were taken in the four-chamber cine.

Routine Cardiac MRI Screening Reveals Reduced Prevalence of Structural Cardiovascular Abnormalities in Patients with Turner Syndrome

Agnes Hamilton-Baillie, 1,2 Christopher M Jones, 1 Caroline Packer, 1 Andy Toogood, 1 Paul Clift, 1 College of Medical and Dental Sciences, University of Birmingham, UK; 2 University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK

Background Turner syndrome has been associated with significant rates of cardiovascular abnormalities. Current guidelines for the management of this condition suggest evaluation of the aorta via cardiac magnetic resonance (CMR) imaging or echocardiography every 5 to 10 years to evaluate each patient via cardiac magnetic resonance (CMR) imaging or echocardiography every 5 to 10 years to evaluate each patient.

Methods We retrospectively reviewed the medical records of 46 adult patients diagnosed with Turner syndrome who had been seen within a large NHS tertiary referral centre and who had undergone routine surveillance for structural cardiovascular anomalies. Each underwent CMR imaging. Data relating to patient demographics and baseline observations were extracted. The presence of structural cardiac anomalies was determined through analysis of MRI and echocardiogram imaging, in addition to review of records relating to previous operative intervention.

Results Medical records for 46 patients with Turner syndrome were reviewed, 7 (15.2%) of whom were mosaic for X-chromosomal monosomy. Median age was 28 years (range 21–73 years), 19/46 (41.3%) patients had no reported structural cardiovascular anomaly. Of the 27 patients with structural anomalies, 19 (70.4%) were reported to feature a bicuspid aorta, 13 (28.3%) coarctation of the aorta and 10 (21.7%) dilated aortic root. 13/46 (28.3%) patients underwent surgical intervention, including 11 (23.9%) who underwent repair of aortic coarctation.

Conclusions The presence of cardiovascular abnormalities amongst our population was lower than that reported within the literature. Patients with Turner syndrome are nevertheless likely to undergo surgical intervention. Risk stratification tools are therefore required to optimise use of resources in patients with Turner syndrome requiring routine screening for structural cardiac anomalies.

Conflicts of interest The authors declare that they have no conflicts of interest relating to this article.

Relationship of Myocardial Strain and Markers of Myocardial Injury to Predict Segmental Recovery Following Acute ST-Segment Elevation Myocardial Infarction

JN Khan*, 2 P Greenwood, 1 SA Nazir, 1 A Singh, 2 C Peebles, 2 J Wong, 1 AH Gershlick, 1 GP McCann. 1 Department of Cardiovascular Sciences, University of Leicester and the NIHR Leicester Cardiovascular Biomedical Research Unit, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, LE3 9QP, UK; 2 Multidisciplinary Cardiovascular Research Centre and the Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (UCAMM), University of Leeds, Leeds, LS2 9LT, UK; 3 University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK; 4 Royal Brompton and Harefield Foundation Trust, Harefield Hospital, Hill End Road, Middlesex UB9 6LY, UK

Background Late Gadolinium Enhancement (LGE) predicts functional recovery in stunned myocardium. Acutely post STEMI, LGE overestimates infarct and underestimates potential for functional recovery. There are no large studies comparing CMR predictors of segmental recovery in acute STEMI.

Purpose Determine whether segmental circumferential strain (Ecc), myocardial salvage (MSI), microvascular obstruction (MVO) and intramyocardial haemorrhage (IMH) predict segmental functional recovery and offer incremental predictive value to segmental extent of enhancement (SEE) acutely post-PPCI.

Methods 1.5T CMR was performed in 164 patients (2624 segments) at 48 hr and 9 month post-STEMI. LV function was assessed on wall-motion scoring on SSFP cines. Segmental dysfunction was WMS ≥2, improvement was WMS decrease of ≥1 and normalisation where WMS returned to 1 at follow-up. SEE and MVO were assessed on LGE using full-width half-maximum thresholding. Oedema and IMH were assessed on T2w imaging using Otsu’s Automated Method. Ecc was Feature Tracking-derived. MSI was the proportion of non-infarcted segmental oedema. Accuracy of baseline SEE, segmental Ecc, MSI, MVO and IMH in predicting improvement and normalisation in dysfunctional segments was assessed with Receiver Operator Curves.

Results 32% of segments were dysfunctional at baseline and 19% at follow-up. With increasing SEE, segmental function worsened and proportion of dysfunctional segments recovering decreased. However 33% of SEE >75% segments improved (Figure 1a). SEE was a strong predictor of improvement (AUC 0.708) and normalisation (AUC 0.807). SEE was a stronger predictor than MVO, IMH and Ecc (p < 0.01 for all), MVO, IMH and Ecc were weak predictors. Combining SEE with MVO,