Myocardial perfusion reserve (MPR) is the ratio of myocardial blood flow (MBF) at stress to rest. A reduced MPR has been associated with a poor prognosis in quantitative Positron Emission Tomography studies. A likely mechanism is microvascular disease. Patients with diabetes mellitus often have microvascular disease and may have reduced MPR. We used automated in-line perfusion mapping, to quantify MBF at a pixel level in order to assess the MPR in patients with diabetes and other patients referred for clinical perfusion CMR.

Method

Over 7 months, stress perfusion CMR with perfusion mapping was performed on 1201 clinically referred patients. Of these, we identified 121 who had also had angiography (invasive or CT) within 6 months (mean 6.4 weeks). Patients with unobstructed epicardial coronary arteries (<50% stenosis) were used in the final analysis (n=45). Global LV MPR was averaged across 3 short axis LV slice perfusion maps. The

Abstract 023 Figure 1

Perfusion maps (basal mid and apical LV slices) for a 50-year-old male with unobstructed coronary arteries at stress (a–c) and rest (d–f). The MPR is 4.54.

Abstract 023 Figure 2

Perfusion maps for a 63-year-old male with diabetes and hypertension. The MPR is 2.34.
MPR of patients with diabetes (n=10) was compared to those without. Patient age, sex, body surface area (BSA), LV end-diastolic volume (EDV), ejection fraction (EF) and the presence or absence of hypertension and late gadolinium enhancement (LGE) were recorded. A multivariable analysis was performed to determine the contributions of these factors to the MPR.

Results

Global LV MPR was: 3.07 across all patients, 2.33 for those with diabetes and 3.27 in those without diabetes (p=0.009). Multivariable analysis indicated that diabetes and age were negatively associated with MPR even after adjustment for sex, BSA, LGE, hypertension, LV EF and EDV (p<0.05 for each group).

Conclusion

In patients with non-obstructive epicardial coronary artery disease, the myocardial perfusion reserve falls with diabetes and increasing age. This is immediately visualisable by used automated in-line perfusion mapping.

SPECTRUM AND SIGNIFICANCE OF CMR FINDINGS IN CARDIAC TRANSTHYRETIN AMYLOIDOSIS

Ana Martinez-Naharro, Thomas A Trebel, Anna Abdel-Gadin, Heerajnurain Bulluck, Giulia Zumbo, Daniel S Knight, Tushar Kotecha, Rohin Francis, David Hutt, Tamer Redk, Stefania Rosmini, Cristina Quarta, Carol J Whelan, Peter Kellman, Julian D Gilmore, James C Moon, Philip N Hawkins, Marianna Fontana, CMR Unit, Royal Free Hospital, University College London, UK; Barts Heart Centre, West Smithfield, London, UK; National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA

Background

Cardiac transthyretin amyloidosis (ATTR amyloidosis) is an increasingly recognised cause of heart failure. Cardiovascular magnetic resonance (CMR) with late gadolinium enhancement (LGE) and T1 mapping is emerging as a reference standard for diagnosis and characterisation of cardiac amyloid.

Abstract 024

Figure 1 Left: four-chamber SSEP cine image in diastole and corresponding late gadolinium enhancement (LGE) images of four patients; asymmetric hypertropy with sigmoid septal contour and transmural LGE (top); asymmetric hypertropy with reverse septal contour and transmural LGE (second from top); symmetric hypertropy pattern and transmural LGE (third from top); left ventricular hypertropy and subendocardial LGE (bottom). Right top: Kaplan-Meier curve for ECV. Right bottom: four-chamber SSFP cine image in diastole and corresponding LGE images, native T1 maps and ECV maps of three patients, showing no LGE (top), subendocardial LGE (middle) and transmural LGE (bottom).