Reference invasive tests of microvascular injury in myocardial infarction

Annette Marie Maznyczka,1,2 Peter McCartney,1,2 Colin Berry1,2

In patients with ST-segment elevation myocardial infarction (STEMI), primary percutaneous coronary intervention (PCI) successfully restores normal antegrade flow in the infarct-related artery in nearly 99% of patients. However, approximately half of all STEMI patients have failed microcirculatory reperfusion, as reflected by microvascular obstruction (MVO), and one-third have myocardial haemorrhage, reflecting severe, ‘downstream’, potentially irreversible, microvascular injury.1

MVO is the ‘Achilles Heel’ of primary PCI, yet clinicians are generally unaware of the occurrence of MVO and myocardial haemorrhage in their patients, unless cardiac magnetic resonance (CMR) is performed. However, CMR is not done routinely. Other established investigations for detecting failure of myocardial reperfusion, such as angiographic, or electrocardiographic parameters, lack sensitivity and reproducibility in clinical practice.

Immediate invasive measurement of microvascular resistance at the time of PCI has the potential to optimise the approach to therapeutic interventions by: (1) acutely identifying patients at high risk of MVO who are most likely to benefit from adjunct therapy, for example, with glycoprotein IIb/IIIa inhibitors, (2) targeting novel therapies in clinical trials to patients with evidence of microvascular dysfunction and (3) allowing immediate evaluation of the efficacy of reperfusion therapy. However, invasive tests of the efficacy of myocardial reperfusion in STEMI patients have been hampered by a number of methodological and technical shortcomings. The ideal acute invasive test of microvascular perfusion and dysfunction should be reliable and reproducible, operator independent and easy to perform with standard PCI equipment.

Currently, the index of microvascular resistance (IMR) has the most extensive evidence base to support its use as a reference test of culprit artery microvascular function in patients with acute STEMI. IMR is a thermodilution-derived index, measured using a guide wire that combines a pressure and temperature sensor. Specifically, IMR is defined as distal coronary pressure multiplied by the mean transit time of a 3 mL bolus of saline at room temperature during maximal coronary hyperaemia. IMR measured at the end of primary PCI reproducibly reflects the extent of MVO, observed on CMR. Moreover, an IMR >40 (postprimary PCI) reliably predicts mortality and heart failure (independent of infarct size) at 1 year.2,3 Importantly, IMR derived at peak hyperaemia has less haemodynamic dependence than coronary flow reserve (CFR), providing a more reproducible assessment of the microcirculation in patients with STEMI (figure 1).

CFR reflects epicardial and microvascular vasodilator capacity (unlike IMR, which measures microvascular resistance); however, CFR does not allow discrimination between the two components. In a previous study, Carrick et al showed that IMR >40 and CFR ≤2 combined did not confer incremental prognostic value in STEMI patients.3 IMR was more closely associated with myocardial haemorrhage, whereas CFR (not IMR) was discriminative in patients with less severe (potentially reversible) MVO.4

In their Heart manuscript, de Waard et al5 present their findings on hyperaemic microvascular resistance (HMR), compared with CFR, measured immediately after PCI for MI (n=176), as a predictor of clinical outcome and MVO (referred to as microvascular injury in their paper). HMR may be considered analogous to IMR, as they are both measures of microvascular resistance. However, unlike IMR, HMR is derived from pressure Doppler flow guide wires, thus negating the need for manual injection of saline. Specifically, HMR is the ratio between hyperaemic mean distal pressure and hyperaemic average Doppler flow peak velocity. A reliable Doppler flow velocity tracing is required for measurement; however, Doppler flow velocity signals may be inconsistent and are particularly influenced by the wire tip position. Indeed, in the current study,
Like IMR, HMR represents an emerging approach for the immediate assessment for MVO in the catheter laboratory, but given the considerations around its use, it may be most useful for research purposes rather than unselected real-world practice. Alternatively, IMR would seem better disposed for use in real-world practice. The findings of de Waard et al. complement those of previously published studies in a number of important ways. First, a broader range of MI types were included (ie, both STEMI (n=130) and non-STEMI (n=46) patients were analysed) with stable patients (without coronary artery disease) serving as a reference cohort. Second, it was a multicentre study. Third, microvascular resistance was measured using Doppler, instead of thermodilution.

The limitations of the current study need to be borne in mind. Importantly, the sample size was modest, raising the possibility of type 1 error, consecutive patients were not recruited and nearly 1 in 10 recordings were ruled out due to issues with data acquisition.

Further work in this area is warranted. In particular, the findings of the current study should be further evaluated in larger cohorts of patients. Several invasive measures of the microcirculation have been described in STEMI cohorts, including IMR, HMR, zero-flow pressure and absolute microvascular resistance (which in contrast to IMR requires estimation of myocardial mass). Each of these indices has pros and cons. To date, only IMR, as a measure of infarct pathology and predictor of mortality, has been validated in large cohorts, and IMR is comparatively straightforward to measure. These tests of microvascular injury have potential to enable a 'stratified medicine' approach, in which patients identified to be at higher risk of adverse outcome may be stratified for more intensive therapy. This idea is being prospectively evaluated in T-TIME (NCT02257294), which is a phase 2, randomised, placebo-controlled clinical trial of reduced doses of intra-coronary alteplase in selected higher risk patients with STEMI.

IMR and HMR have potential as novel indices for patient selection and as biomarkers of the efficacy of therapy; however, more research is needed to assess whether IMR and HMR are modifiable. Further research is also warranted to validate IMR and HMR as novel tests of the efficacy of intracoronary therapies; should this be the case, the results would support the use of IMR and HMR as a biomarker of the efficacy of therapeutic interventions designed to improve myocardial reperfusion, as assessed in future trials.

In conclusion, the study by de Waard et al. extends the evidence on the pathophysiological and prognostic importance of microvascular dysfunction in the culprit artery at the end of PCI. De Waard et al. provide original data on HMR, which adds to previous investigations of IMR and CFR, in patients with STEMI. Studies in larger cohorts are needed to explore further the utility of IMR and HMR as a therapeutic target during primary PCI and to identify and stratify higher risk patients for more intensive management.

Contributors CB initially outlined a sketch of the text. AMM provided the first draft. PM provided the figures. All three of the authors contributed to critical review, revisions and agreed to the final version.

Funding This work was supported by the British Heart Foundation (BHF) Centre of Research Excellence Award (RE/13/5/30117) and the BHF Project Grant PG/11/2/28474. AMM is supported by a BHF Clinical Research Training Fellowship (FS/16/74/32573). PM is supported by a research grant from the National Institute of Health Research Efficacy and Mechanism Evaluation Programme (12/17045).

Competing interests Based on institutional agreements with the University of Glasgow, Siemens Healthcare has provided work-in-progress cardiovascular magnetic resonance imaging methods, and Professor CB has acted as a consultant to St Jude Medical. These companies had no involvement in this manuscript. None of the other authors have disclosures.

Provenance and peer review Commissioned; internally peer reviewed.

OPEN ACCESS
Open Access This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/

© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

To cite Maznyczka AM, McCartney P, Berry C. Heart 2018;104:90–92.
Published Online First 5 August 2017

Published Online First 5 August 2017

http://dx.doi.org/10.1136/heartjnl-2017-311431

Heart 2018;104:90–92.
doi:10.1136/heartjnl-2017-311695
REFERENCES


