in type 2 diabetes provides a strong link between the high fat phenotype, and reduced energetic capacity of type 2 diabetic mitochondria.

Furthermore, delaying the activation of A1AR to 15 or 30 min post-reperfusion significantly reduced infarct size compared to IR control.

The co-administration of DPCPX (200 nM) with 2′-MeCCPA (10 nM) at the onset of reperfusion significantly attenuated the 2′-MeCCPA mediated infarct. The concomitant administration of 2′-MeCCPA with DPCPX at either 15 or 30 min post-reperfusion also abrogated 2′-MeCCPA induced cardioprotection.

Co-administration of Wortmannin (100 nM) with 2′-MeCCPA (10 nM) at the onset of reperfusion also significantly reduced the 2′-MeCCPA mediated infarct size as well as the co-administration at 15 or 30 min post-reperfusion reversed the cardioprotection.

Conclusion This is the first study to display how 2′-MeCCPA, a highly selective A1AR agonist, when administered at reperfusion, 15 or 30 min post-reperfusion can limit the infarct size development and how the RISK cell signalling pathway is also associated with cardioprotection.

P34

ADENOSINE A1 RECEPTOR ACTIVATION CAN PROTECT THE MYOCARDIUM FROM ISCHAEMIA REPERFUSION INJURY POST REPERFUSION

J Bhandal, A Hussain, J Buckley, H Maddock. ABES, Coventry University

10.1136/heartjnl-2018-BSCR.39

Introduction

In response to ischemia, type 2 diabetic hearts are less able to upregulate anaerobic glycolysis and show poorer contractile function. Pharmacological activation of Hypoxia-Inducible Factor (HIF) may be beneficial for the diabetic heart, as it may promote glycolysis, improve function and tolerance of ischemia.

Methods Control and type 2 diabetic rats were given five oral doses (5 mg/kg daily) of PHD-selective HIF activator BAY85-3934. Hearts were perfused ex vivo and subjected to low-flow (0.35 ml/min/gw) ischaemia-reperfusion (IR). Glycolysis, palmitic acid oxidation and function were measured throughout. Mitochondrial oxidation was measured in isolated mitochondria using a Clark-type electrode.

Results

Diabetic hearts showed decreased rate-pressure product following ischemia-reperfusion. Pre-treatment with BAY85-3934 resulted in increased glycolytic rate in diabetic hearts, paired with improved functional recovery post-IR. BAY85-3934 treated diabetic rats showed increased hematocrit, indicating systemic activation of HIF signalling. Blood glucose levels remained unchanged with treatment despite changes in cardiac glycolytic rate.

Conclusion

This study has shown that treatment with HIF activators may provide a novel avenue to improve metabolism and functional recovery in the diabetic heart following ischemia-reperfusion.