A META-ANALYSIS ON THE IMPACT OF CONTACT FORCE SENSING CATHETERS ON OUTCOMES IN ATRIAL FIBRILLATION ABLATION: A FOCUS ON STUDY DESIGN

Amit Kaura, Nicholas Sunderland, Francis Murtaghroyd, Para Dhillon, Paul Scott. NIHR Imperial College London Biomedical Research Centre and Imperial College Healthcare NHS Trust, King’s College Hospital NHS Foundation Trust

Background One determinant of failure of atrial fibrillation (AF) ablation is the lack of transmural lesions. Contact force sensing (CFS) catheters enable real-time assessment of the amount of force applied to the catheter-tissue interface, with higher contact force associated with lesions of greater size. Previous meta-analyses have pooled results from randomized controlled trials (RCTs) and observational studies (OSs) and concluded that CFS catheters improve clinical outcomes. This meta-analysis sought to compare the efficacy and safety of CFS catheters with non-CFS catheters in both RCTs and OSs.

Methods A total of 28 studies were identified using Embase and Medline databases; 8 RCTs and 20 OSs. For the primary outcome of atrial tachyarrhythmia recurrence, data from RCTs and OSs were analysed according to study design. Secondary outcomes included ablation time and all procedure-related complications. Summary estimates for each variable were calculated using the random-effects model based on DerSimonian and Laird’s meta-analytic statistical method.

Results In the 8 RCTs there were a total of 844 patients (419 in CF group and 425 in non-CF group). In the 20 OSs there were 3900 patients (1523 in CF group and 2377 in non-CF group). The median age of patients was 60.3 years (59.0 years in RCTs and 60.7 years in OSs). The majority were male (74.0% in RCTs and 69.6% in OSs). The median follow-up time post-AF ablation was 12 months in both RCTs and OSs.

While CFS did not lead to a significant reduction in atrial tachyarrhythmia recurrence in RCTs (n=844, risk ratio (RR) 0.98, 95% confidence interval (CI) 0.80 to 1.19, p=0.81), a significant reduction was observed in OSs (n=2,259, RR 0.74, 95% CI 0.65 to 0.84, p<0.0001), both at a median follow-up of 12 months.

Data on ablation time were available for 6 RCTs (n=751) and 14 OSs (n=3,152). The use of CFS catheters had no significant impact on ablation time in both RCTs (-0.36 minutes, 95% CI -3.32 to 2.59, p=0.81) and OSs (-3.68 minutes, 95% CI -7.91 to 0.55, p=0.09).

For both RCTs (n=706) and OSs (n=3,427), the incidence of all procedure-related complications was similar in the CFS and non-CFS groups (RCTs, RR 0.99, 95% CI 0.55 to 1.78, p=0.97; OSs, RR 0.78, 95% CI 0.53 to 1.16, p=0.22).

Conclusion Although OSs have demonstrated positive results, data from RCTs have failed to show any significant benefit from CFS catheters in terms of procedural success in AF ablation. The safety profile of CFS catheters was similar to non-CFS catheters in both RCTs and OSs.

Conflict of Interest No conflicts of interest

THE SHORT PR INTERVAL IN YOUNG ATHLETES

G Parry-Williams, A Malhotra, H Dutia, A Cajarcum, Basu, C Miles, Papadakis, Sharma. St George’s University of London, Molecular and Clinical Sciences Research Centre, London, United Kingdom, University Hospitals of Leicester NHS Trust, Cardiology, Leicester, United Kingdom, St George’s University of London, United Kingdom.

Background International recommendations for interpreting the athlete’s ECG define a short PR interval as <120ms. Despite the recommendation that asymptomatic athletes do not require further investigation unless an accessory pathway is suspected, athletes are not infrequently referred for further evaluation. The prevalence of a short PR in athletes has not previously been reported.

Purpose To investigate the prevalence of short PR in young athletes and its association with age, gender and ethnicity.

Methods Between 2011–2014, 15,572 athletes aged 14–35 underwent cardiac screening including an ECG. An athlete was defined as an individual participating in sport 6hrs/wk. ECGs were analysed by 2 independent experts. Athletes in whom the PR interval was not fixed were excluded. A short PR was defined as <120ms.

Results Amongst 15,572 athletes (median age 18.6 years, 92% white, 80% male), the mean PR interval was 151msec and shorter in females vs. males, white vs. non-white and adolescent (<16 years) vs. older (17–35 years) athletes (table 1).

An isolated short PR was present in 765 (4.9%) athletes and was more common in females vs. males (6.2% vs. 4.2%; p<0.0001) (figure 1). The prevalence of short PR in athletes reduced significantly with advancing age, present in 9% of 14 year olds but only 3.2% of 17–35 year olds (p<0.0001). The prevalence of short PR was similar between ethnic groups (4.7% white vs 4.2% non-white; p=0.55). The overall prevalence of the Wolff-Parkinson-White pattern was 0.08%.

Conclusions A short PR interval is a fairly frequent finding in this cohort with a predilection for younger and female athletes. Possible explanations for shorter conduction time include anatomically smaller hearts, higher sympathetic tone or