non-emergent interruptions and disturbances, in an attempt to improve operator conditions and overall patient safety.

Conflict of Interest Nil

55 INVASIVE CORONARY PHYSIOLOGY BEFORE AND AFTER TAVI: A QUANTITATIVE META-ANALYSIS

1Rafail Kotronias*, 2Roberto Scarsini, 3Skanda Rajasundaram, 4Giovanni Luigi De Maria, 5Flavio Ribichini, 6Rajesh Kharbanda, 7Adrian Banning. 1Heart Centre, Oxford University Hospitals NHS Trust; 2Heart Centre, Oxford University Hospitals NHS Trust; 3Heart Centre, Oxford University Hospitals NHS Trust; 4Heart Centre, Oxford University Hospitals NHS Trust; 5Division of Cardiology, University of Verona; 6NIHR University of Oxford BRC and Oxford University Hospitals NHS Foundation Trust; 7Heart Centre, Oxford University Hospitals NHS Trust

10.1136/heartjnl-2019-BCS.53

Introduction As TAVI expands to younger and lower surgical risk severe AS patients, appropriately treating co-existent coronary artery disease is key to improving long-term cardiovascular outcomes. Recently, coronary physiology has been studied in patients undergoing TAVI in an attempt to incorporate it in revascularisation strategies. We seek to perform a meta-analysis of studies exploring the influence of TAVI on coronary physiology.

Methods We conducted a search of Medline and EMBASE to identify studies evaluating coronary physiology indices before and after TAVI. Double independent screenings and extractions were employed. Random effect meta-analysis with the inverse variance methods were used to estimate the pooled mean difference of coronary haemodynamic indices before and after TAVI. Analyses were performed with RevMan (Review Manager version 5.3.5, Nordic Cochrane Centre, Denmark).

Results Five studies evaluating coronary physiology in 169 severe AS patients with 250 interrogated coronaries were included in the quantitative meta-analysis. The mean participant age and aortic valve area were 81 and 0.71cm² respectively. In non-diseased coronary vessels, coronary flow reserve (CFR) and fractional flow reserve (FFR) did not significantly differ following TAVR; mean difference 0.11; 95% CI -0.10, 0.32; p=0.29; I²=0%; p=0.68; n=3 and mean difference -0.01; 95% CI -0.04, 0.03; p=0.75; I²=41; p=0.19; n=2 respectively. In stenosed vessels, FFR and instantaneous wave-free ratio (iFR) did not significantly change following TAVR with comparable precision; mean difference -0.01; 95% CI -0.03, 0.01; p=0.49; I²=0%; p=0.46; n=3 and mean difference 0.00; 95% CI -0.02, 0.02; p=1.00; I²=0; p=1.00; n=2 respectively.

Conclusion Our meta-analysis demonstrates that there are only minor, non-significant variations in coronary physiology measurements of severe AS patients before and after TAVI. The stability of invasive physiology assessment in severe AS patients is important for its incorporation in decision making algorithms. Studies investigating optimal ischaemic and intervention FFR and iFR cut-offs in patients with severe AS are anticipated.

Conflict of Interest None

56 PREDICTING POOR SHORT AND MEDIUM-TERM SURVIVAL AFTER TAVI: A SINGLE UK CENTRE EXPERIENCE

1Lee Zong Xuan*, 2Elangovan Senthil, 3Anderson Richard, 4Groves Peter. 1Cardiff University School of Medicine; 2Cardiff and Vale UHB; 3University Hospital Wales

10.1136/heartjnl-2019-BCS.54

Transcatheter Aortic Valve Implantation (TAVI) for severe, symptomatic aortic stenosis improves quality of life and survival in most patients. It is, however, important to identify patients who are unlikely to get these benefits from TAVI so that futile treatment can be avoided. Futility in this context can be regarded as lack of functional improvement or death within the first two years after the procedure. The FRANCE-2 multi-parametric risk score was previously developed to predict mortality after TAVI and comprises 9 pre-procedural factors integrated into a 21-point scoring system. The FRANCE-2 score was originally validated against early (up to 30 days) mortality after TAVI but its value in anticipating longer term outcomes is uncertain. The aims of this study were to determine whether the FRANCE-2 scoring system is of value in determining medium as well as short term survival in patients undergoing TAVI in a single UK centre and to compare its relative merits in this regard with the logistic EuroSCORE. A cohort of 187 consecutive patients undergoing TAVI in a single UK centre were studied. Baseline clinical data were collected from the UK Central Cardiac Audit Database (CCAD) and patient records. Mortality tracking was achieved in 100% of patients. FRANCE-2 risk scores were calculated retrospectively and c-statistics were applied to determine the discriminative power of the FRANCE-2 score and the logistic EuroSCORE in associating with mortality. Using the FRANCE-2 scores, the patients were divided into low risk (score 0), moderate risk (score 1–5) and high risk (score >5) groups and the survival outcomes were compared. Of the 187 patients, 57.2% were male and the mean age was 80.9±6.9 years. Survival rates after TAVI at 30-days, 1- and 2-years were 95.7% (n=179), 88.2% (n=165) and 77.5% (n=145) respectively. The frequency of high risk parameters in this cohort of patients that contributed to the FRANCE-2 scores is shown in the table. The median score was 2 and the highest
score was 9. The c-index of FRANCE-2 score for predicting 30-day mortality was 0.793 (p=0.009) and for 1-year mortality 0.679 (p=0.016). The mean survival time for patients with high FRANCE-2 scores (18.6 months) was significantly less than for patients with low (53.8 months) and moderate (53.6 months) scores (p=0.0004) (figure 1). The logistic EuroSCORE was poorly associated with mortality with a c-index of 0.605 (p=0.346) and 0.616 (p=0.11) for 30-day and 1-year mortality respectively. The FRANCE-2 risk score is predictive of medium term as well as short term survival after TAVI in a single UK centre clinical practice. The logistic EuroSCORE is a poor predictor of short and medium-term survival after TAVI. The presence of a high FRANCE-2 score (>5) is associated with poor survival after TAVI. The use of the FRANCE-2 scoring system may be a useful additional tool for the Heart MDT in identifying patients who will benefit least from TAVI.

Conflict of Interest No

57 INVASIVE VERSUS MEDICAL MANAGEMENT OF ELDERLY PATIENTS WITH NON-ST ELEVATION MYOCARDIAL INFARCTION (NIHR HEALTH INFORMATICS COLLABORATIVE SENIOR-NSTEMI STUDY)

Amit Kaura, Jonathan Sterne, Abdurahim Mulla, Vasileios Panoulas, Ben Glampson, Jim Davies, Kerrie Woods, Joe Omigie, Anoop D Shah, Keith Channon, Jonathan Mayet, Folkert Asselbergs, Michael O’sullivan, Graham Lord, Narbeh Melikian, Daryl Francis, Divaka Perera, Ajay Shah, Rajesh Kharbanda, Biyaz Patel, Jamil Mayer, NIHR Imperial College London Biomedical Research Centre and Imperial College Healthcare NHS Trust; NIHR University of Bristol BRC and University Hospitals Bristol NHS Foundation Trust; NIHR University of Oxford BRC and Oxford University Hospitals NHS Foundation Trust; NIHR King’s College London BRC and King’s College Hospital NHS Foundation Trust; NIHR University College London BRC and University College London Hospitals NHS Foundation Trust; NIHR University of Cambridge BRC and Cambridge University Hospitals NHS Foundation Trust; NIHR King’s College London BRC and Guy’s and St Thomas’ Hospital NHS Foundation Trust; King’s College London

Background Trials and registry studies suggest lower long-term mortality after invasive than medical management among patients with non-ST elevated myocardial infarction (NSTEMI), but elderly patients were underrepresented. The aim of our study was to estimate the effect of invasive compared with medical management on survival in patients with NSTEMI aged 80 years, using routine clinical data.

Methods We used National Institute for Health Research Health Informatics Collaborative data to identify eligible patients admitted during 2010–2017 at five tertiary centres. We compared patients who did and did not have invasive management within 3 days of their peak troponin level. To limit the effect of immortal time bias, follow-up started 3 days after peak troponin: deaths within three days were excluded. We conducted intention-to-treat analyses.

Propensity scores were derived from a logistic regression model based on pre-treatment variables: patient demographics, blood test results, cardiovascular risk factors, history of cardiovascular disease and other comorbidities. We modelled non-linear relationships using splines. Patients with high probability (based on propensity score) of medical or invasive intervention were excluded. We used Cox models to estimate hazard ratios (HR) comparing invasive with medical management. Three methods were used to control confounding; multivariable-adjusted, multivariable-adjusted additionally for continuous propensity score and inverse-probability-of-treatment (IPT) weighting. Kaplan-Meier survival curves were plotted. The robustness of the results to unmeasured confounding was assessed in sensitivity analyses.

Results The 1,636 patients (59.8% medical management) included in analyses had a median age of 85 (IQR 82–89) years. During a median follow-up of 32.4 (IQR 11.5–53.9) months, there were 717 (43.8%) deaths. At 3-years, cumulative survival was 76.9% and 53.6% in the invasive and medical management groups, respectively (figure 1).

The crude HR comparing invasive with medical management was 0.41 (95% CI 0.34–0.50). The multivariable-adjusted HR was 0.51 (95% CI 0.42–0.63), was 0.50 (95% CI 0.40–0.61) with additional adjustment for propensity score, and was 0.54 (95% CI 0.48–0.61) in the IPT-weighted model (all p<0.0001). The E-value for the point estimate was 2.61: this implies that residual confounding could explain the...