remodelling, low-attenuation plaque, spotty calcification or napkin-ring sign. The association with future incidence of major adverse cardiac events (cardiac mortality or non-fatal myocardial infarction) was assessed using Cox regression models (adjusted for age, sex, epicardial fat volume and coronary artery disease ≥50% stenosis).

Results The prevalence of HRP and high FAI (≥70.1 Hounsfield Units, as previously validated) was 23.6% (n=923) and 24.3% (n=952), respectively. Over a median follow-up of 5.6 years (25th-75th percentile: 4.0–7.0 years) 91 MACE were recorded. Patients with both HRP features and high FAI (FAI+/HRP+) had a 6.3-fold higher adjusted risk of MACE compared to those with neither of these risk features (HRP-FAI-). Furthermore, patients without HRP features but with high FAI (HRP+/FAI+) had a 4.9-fold higher adjusted risk of MACE compared to the reference (HRP-/FAI-) group.

Conclusion FAI is a stronger predictor of cardiac mortality than high-risk plaques, and there is additive predictive value between plaque morphology and coronary inflammatory burden. There is need for tools to provide comprehensive risk assessment based on CCTA, by extracting, weighting and interpreting all available information from these scans.

OP5 PERICORONARY ADIPOSE TISSUE DENSITY IS GREATER IN TAKAYASU ARTERITIS THAN ATHEROSCLEROSIS AND IS ASSOCIATED WITH CORONARY ARTERIAL INFLAMMATION MEASURED BY 68GA-DOTATATE PET

1Christopher Wall, 2Yuan Huang, 3Christopher Uy, 4Elizabeth PV Le, 5Enrico Tombetti, 6Ricardo Manavaki, 7Marc R Dweck, 8Deepa Gopalan, 9Martin R Bennett, 10Piotr Slomka, 11Damir Dey, 12Justin C Mason, 13James HF Rudd, 14Jason M Tankin. Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK; 2EPSRC Centre for Mathematical Imaging in Healthcare, University of Cambridge, Cambridge, UK; 3Department of Radiology, University of Cambridge, Cambridge, UK; 4Vascular Sciences, National Heart and Lung Institute, Imperial College London, London, UK; 5Vita-Salute San Raffaele University, Milan, Italy; 6Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK; 7Department of Radiology, Cambridge University Hospitals NHS Trust, Cambridge, UK; 8Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, USA; 9Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, USA.

Introduction Pericoronary adipose tissue (PCAT) density is associated with vascular inflammation, but its nature is not fully understood. We compared PCAT density with clinical and molecular imaging markers of inflammation.

Methods PCAT density was quantified in patients with Takayasu arteritis (TAK), coronary artery disease (CAD), and age and gender-matched healthy controls from cardiac CT images using semi-automated software (Autoplaque). In TAK patients, PCAT density was also compared to the Indian Takayasu Clinical Activity Score (ITAS). In CAD patients, PCAT density was compared to maximum tissue-to-blood ratio (TBRmax) from motion-corrected 68Ga-DOTATATE PET, using image registration software (FusionQuan) and aortic 18F-fluorodeoxyglucose (FDG) PET. Imaging was acquired during clinical care or prior research. 68Ga-DOTATATE is an experimental marker of vascular inflammation that binds macrophage somatostatin receptor-2.

Results 60 patients were included (TAK, n=20; CAD, n=20; healthy, n=20). Mean PCAT density varied significantly among the three groups (TAK: -74.0 ± SD 11.92 Hounsfield unit [HU]; CAD: -80.39 ± SD 10.9 HU; healthy controls: -83.85 ± SD 10.07 HU; p<0.0001). C-reactive protein was greater in TAK than CAD patients (TAK: 25.2 ± SD 16.1 mg/L; CAD: 2.5 ± SD 1.73 mg/L, p=0.004). PCAT density was significantly associated with ITAS (r=0.61, p=0.004) in TAK patients, and coronary 68Ga-DOTATATE TBRmax (rho=0.31, p<0.001) in CAD patients. No significant patient-level confounders were identified. PCAT density was not statistically associated with aortic 18F-FDG in CAD patients, or subcutaneous (pre-sternal) adipose tissue density in either disease group.

Conclusion PCAT density could be a useful, non-PET marker of coronary arterial inflammation and disease activity in both TAK and CAD patients.