
A Pollock, R Kumar, P Devitt, B Kent, C Daly. St. James’s Hospital, Dublin, Ireland

Background Hydroxychloroquine (HC) and Azithromycin (AZ) is a novel treatment regimen in the management of Coronavirus disease 2019 (COVID-19). Both HC and AZ are associated with QT prolongation, which can precede malignant arrhythmias such as torsade de pointes (TdP) and ventricular fibrillation. Limited literature exists to establish the incidence of QT prolongation with COVID-19 treatment and its relationship with morbidity and mortality. This study was performed to assess the incidence of QT prolongation secondary to HC and AZ, and how it related to morbidity and mortality.

Methods A retrospective chart review was performed of COVID-19 patients treated with HC, with or without concomitant AZ, in our hospital in March and April 2020. Their baseline demographic characteristics and co-morbidities were recorded. The baseline corrected QT interval (QTc) and change in QTc was calculated using Bazett’s formula on both electrocardiograms (ECGs) and inpatient cardiac monitors.

Results Out of 62 PCR confirmed COVID-19 patients (34% female; mean age 67), 58 patients (93.5%) received both HC and AZ, while 4 patients (6.5%) received HC alone. Hypertension was the most common co-morbidity (33.5%) followed by diabetes mellitus (16%), known ischaemic heart disease (19.4%) and atrial fibrillation (8%). Twenty-three patients (37.1%) were on ≥2 additional QT prolonging medications. Mean baseline QTc was 445.7 msec (SD 30.4). The mean QT peak was 469.3 msec (SD 44.5) with a mean change in QTc of 28.4 msec (SD 31.4). QT prolongation was seen in 62.9% of patients, with increase in QTc ≥60 msec or QT peak ≥500 msec in 24.2% of patients. The mean length of stay was 19.7 days (SD 15.2) (range 3–57 days). Treatment was stopped in 6 patients (9.7%) due to QT prolongation. There were no cases of torsade de pointes (TdP). Mortality was 22.6%, with 16.1% of patients admitted to an intensive care unit (ICU). Patients with QT prolongation had a significantly higher risk of death (33% vs 4.3%), with an increased likelihood of ICU admission (20.5% vs 8.7%), and increased length of stay (24.7 days vs 18.6 days).

Conclusions In this study, patients who were treated with HC and AZ were at high risk of QT prolongation. QT prolongation was associated with higher mortality, increased ICU admission and longer length of stay. Close cardiac monitoring and rationalisation of additional QT prolonging drugs are essential to prevent adverse cardiac events with this treatment regimen.

A HIERARCHICAL ANALYSIS OF ELIGIBILITY FOR PCSK9 INHIBITION IN IRELAND: BRIDGING THE DIVIDE BETWEEN THE NCPE MANAGED ACCESS PROTOCOL AND ESC/EAS GUIDELINES

M Waters, JI Coughlan, C O’Connor, V Maher. Tallaght University Hospital, Dublin, Ireland

Introduction In 2019, the national center for pharmaco economics (NCPE) released a managed access protocol (MAP) for the prescribing of proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) in Ireland. To be eligible for a PCSK9i, patients must have had a myocardial infarction or coronary artery bypass grafting, LDL of >4.0 mmol/L treated with high dose statin and ezetimibe. In contrast, the 2019 ESC/EAS guidelines on the management of dyslipidaemias recommend that patients at ‘very high risk’ with an LDL-C of >1.4 mmol/L on a maximally tolerated dose of a statin and ezetimibe, be considered for PCSK9i. We aimed to define the proportion of patients who are suitable for a PCSK9i following completion of cardiac rehabilitation based on these criteria.

Method We retrospectively analysed data on patients undergoing cardiac rehabilitation in our center from January 2018 to December 2019. We then applied the NCPE MAP and the ESC/EAS criteria to assess eligibility for a PCSK9i in the cohort. ‘Very high risk’ was defined as documented atherosclerotic coronary artery disease as per ESC dyslipidaemias guidelines.

Results The analysis includes 299 patients, who had complete lipid profiles at baseline and 6 months of follow-up, and who have a history of coronary artery disease. Baseline characteristics, mean age 62.5 years, 76% male. 202 (67.6%) patients had a history of MI or CABG making them eligible for a PCSK9i based on NCPE clinical criteria. Only 1 patient (0.5%) in this group was on a high dose statin, ezetimibe and had a 6 month LDL-C of ≥4.0 mmol/L making them eligible for a PCSK9i as per NCPE MAP criteria. In contrast to the NCPE MAP criteria all 299 patients were deemed eligible for a PCSK9i based on ESC/EAS clinical criteria of ‘very high risk’. 160 patients (53.5%) had an LDL-C level >1.4 mmol/L at 6 months despite maximally tolerated statin therapy, mean LDL-C 2.29 mmol/L. Only a minority of patients in this cohort were on ezetimibe, 30/160 (18.7%), however previous studies have shown that on average ezetimibe reduces LDL-C by 25% in combination with statins. Based on this, we sought to define the cohort who would potentially be eligible if they had been on ezetimibe and experienced a 25% reduction in LDL-C. 81/160 patients had experienced a 25% reduction in LDL-C. 81/160 patients had
a 6-monthly LDL-C >1.8 mmol/L and were on high dose statin therapy, we included these patients in our final analysis, resulting in 37.1% (111/299) patients in our cohort being eligible for a PCSK9i based on current ESC guidelines, results are summarized in figure 1.

Discussion Our results highlight the discrepancy between current ESC/EAS guidelines and the reimbursement criteria for PCSK9i in Ireland. This discrepancy results in minimal patients with coronary artery disease being eligible for a PCSK9i in Ireland. The results also highlight that a significant proportion of patients in clinical practice do not meet LDL-C goals post cardiac rehabilitation, these targets should be met in order to reduce future cardiovascular risk and improve outcomes for patients.

3 IMPACT OF MORBID OBESITY AND OBESITY PHENOTYPE ON OUTCOMES POST TRANSCATHETER AORTIC VALVE REPLACEMENT

**Cardiovascular Institute. Hospital Clínico San Carlos. IDISSC. Madrid. Spain; 2Quebec Heart and Lung Institute, Laval University, Quebec City, Quebec, Canada; 3Cardiology Department, Ranquell University Hospital, Toulouse, France; The Ochterlony Clinical School, Osher Medical Center, New Orleans, LA, US; 4Ferrarotto Hospital, University of Catania, Catania, Italy; 5CBERCV Cardiology Department, Hospital Universitario Vitone Vignin de la Victoria, Málaga, Spain; 6Division of Cardiology, St. Michael’s Hospital, Toronto University, Toronto, Ontario, Canada; 7Hospital Clínico Universitario de Santiago, CBERCV, Santiago, Spain; 8Heart Center Lucerne, Lucerne Kantonsspital, Lucerne, Switzerland; 9Hospital Universitario Marques de Valdecilla, Santander, Spain; 10Interventional Cardiology and Angiology Clinic, Institute of Cardiology, Warsaw, Poland; 11CBERCV, Instituto de Ciencias del corazón (ICICOR), Hospital Clínico Universitario de Valladolid, Valladolid, Spain; 12Cardiology Unit, Cardio-Thoracic-Vascular Department, University Hospital of Bologna, Policlinico s. Orsola – Malpighi, Bologna, Italy; 13Cardiology Department, Cardiovascular Institute, Hospital Clinic; Universidad de Barcelona; Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; 14Hospital General Universitari Vall d’Hebron, Barcelona, Spain; 15Department of Cardiology, Hospital Universitário Puerta de Hierro, Majadahonda, Spain; 16Department of Cardiology, Hospital Universitario La Princesa, Madrid, Spain; 17Heart Institute (InCor), Sao Paulo, Brazil

10.1136/heartjnl-2020-ICS.3

Background The obesity epidemic continues to grow and is recognized as a major public health issue. The prevalence of obesity has increased dramatically in recent years, and its consequences extend far beyond simply cosmetic concerns. Obese patients undergoing transcatheter aortic valve replacement (TAVR) have been shown to have higher rates of major vascular complications and mortality compared to non-obese patients. This is likely due to the increased technical complexity of the procedure and the higher risk of periprocedural complications associated with obesity.

Aim The aim of this study was to compare periprocedural and mid-term outcomes in a matched cohort of MO and non-obese (NO) patients and to determine whether adipose tissue distribution analysis from pre-TAVR CT scans can provide prognostic information.

Methods This was a multicentre study involving 18 tertiary referral centres in Europe, Canada, North and South America. Consecutive MO patients (BMI ≥40 kg/m², or ≥35 kg/m² with obesity related co-morbidities) with severe aortic stenosis (AS) who underwent TAVR were analyzed and compared to a non-obese (NO) cohort (BMI 18.5–29.9 kg/m²). Data on patient characteristics, periprocedural and mid-term outcomes were collected.

A propensity-score matched analysis was performed matching NO and MO patients on a 1:1 basis to assess differences in outcomes between groups. A multivariate analysis was undertaken to determine predictive factors for all-cause mortality at 2 years in the MO group.

Pre-TAVR computed tomography scans were analyzed in a centralized core laboratory to assess adipose tissue distribution based on epicardial fat (EAT), abdominal visceral (VAT) and subcutaneous fat (SAT), and to evaluate its impact on outcomes.

Results A total of 3174 patients undergoing TAVR were included: 2264 in the NO and 910 in the MO groups respectively. After propensity score application, a matched cohort with 770 patients per group was obtained. Groups were well matched although some baseline cardiovascular risk factors, such as hypertension, hyperlipidemia and insulin requiring diabetes mellitus, continued to differ. Major vascular complications (MVC) occurred more commonly (6.6% vs 4.3%, p=0.043) and device success was lower (84.4% vs 88.1%, p=0.038) in the MO group. After a median follow-up of 14.11 months [IQR 6.47–36.01], survival analysis demonstrated similar rates of all-cause and cardiovascular mortality for matched MO and NO groups (79.4 vs 80.6% p=0.731 and 88.7 vs 87.4% p=0.699 respectively). Decreased baseline hemoglobin, non-transfemoral vascular access, MVC, stage 2–3 acute kidney, and periprocedural stroke were all independent predictors of 2-year mortality.

Adipose tissue distribution analysis identified an adverse MO phenotype whereby abdominal VAT:SAT ratio ≥1 was associated with increased 2-year all-cause (HR 1.15; 95%CI 1.20–7.77; p=0.019) and cardiovascular (HR 4.11; 95%CI 1.06–15.90; p=0.041) mortality, and readmissions (HR 1.81; 95%CI 1.07–3.07; p=0.027). Additionally, increased all-cause mortality at 2 years was found for each 10 cm²/m² increase in indexed EAT (HR 1.16; 95% CI 1.03–1.30, p=0.011). After multivariable analysis, VAT:SAT ratio ≥1 remained a strong predictor of 2-year mortality (HR 2.78, p=0.035).

Conclusion MO patients undergoing TAVR demonstrate similar periprocedural and mid-term outcomes to a matched cohort of NO patients. Higher rates of MVC in the MO group highlights the need for vigilance when performing vascular access. VAT:SAT ≥1 identifies an obesity phenotype at higher risk of 2-year mortality and readmission.

4 PREDICTORS OF VENTRICULAR ARRHYTHMIA IDENTIFIED FROM FOLLOW UP OF TETRALOGY OF FALLOT

1B Kelly, 2PF Brennan, 3C Lockhart, 4M Spence, 5C Owens, 6A Sands, 7B McCrossan, 8J Gordon, 9J Briggs. 1Adult Congenital Heart Disease department, Royal Victoria Hospital, Belfast, UK; 2Paediatric Cardiology Department, Royal Belfast Hospital Sick Children, Belfast, UK

10.1136/heartjnl-2020-ICS.4

Introduction Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart defect. Subsequent to the introduction of surgical repair, long-term outcomes for patients with TOF have improved significantly. However right ventricular outflow tract dysfunction and regurgitative volume overload remains a recognised sequela, often progressing to right ventricular (RV) dilatation and dysfunction, arrhythmia, and premature death. In repaired TOF (rTOF), QRS prolongation is a recognised predictor of the development of sustained