A PROTEIN BIOMARKER MODEL FOR DETECTION OF CARDIAC ARRHYTHMIA AND PREDICTION OF ASSOCIATED HEART FAILURE

1C Tonry, 2K McDonald, 3N Ledwidge, 2B Hernandez, 4N Gilezva, 5C Rooney, 3B Morrissey, 5S Pennington, 5J Baugh, 5C Watson, 5Queens University Belfast, UK; 2STOP-HF Unit, St. Vincent’s University Healthcare Group, Dublin, Ireland; 3Conway Institute University College Dublin, Ireland; 4Heartbeat Trust, Dublin, Ireland

Introduction Cardiac arrhythmia is strongly linked with heart failure (HF) and a primary cause of stroke. The condition affects around 37,000 people in Northern Ireland although it is estimated that many thousands more remain undiagnosed. It is important to be able to diagnose cardiac arrhythmia early, so that appropriate interventions can be made to reduce risk of subsequent stroke or HF. Currently, diagnosis and management of cardiac arrhythmia is reliant on assessment of clinical risk factors, however, routine monitoring of circulating biomarkers would significantly improve accuracy for prediction of arrhythmia and associated adverse events. The aim of this study was to (i) identify protein biomarkers, which can predict cardiac arrhythmia and (ii) identify protein biomarkers that are predictive of HF in patients with arrhythmia.

Methods Multiple Reaction Monitoring mass spectrometry-based assays were developed for measurement of a selection of candidate protein biomarkers of cardiovascular injury. Assays were developed using nanoflow reverse phase C18 chromatographic ChipCure based separation, coupled to an Agilent 6460 triple quadrupole mass spectrometer. Optimised MRM assays were applied, in a sample blinded manner, for analysis of a cohort of 410 serum samples. This included 112 patients with cardiac arrhythmia as well as matched controls without cardiac arrhythmia.

Results MRM assays were established for measurement of 25 proteins. Individually, a number of the biomarker proteins show significant differential expression between patients with and without cardiac arrhythmia. An 11-protein biomarker model was identified, which was comparable to BNP in prediction of HF within the cardiac arrhythmia subset of patients (Protein panel AUC = 0.856 vs BNP AUC = 0.838). Combination of the 11 proteins with BNP notably enhanced the predictive capacity of BNP (AUC = 0.899).

Conclusions/Implications Through this study, assays have been developed for robust, multiplexed measurement of 25 cardiovascular disease-associated proteins in patient serum samples. A number of proteins were identified, which show significant expression changes in association with cardiac arrhythmia and will be further explored. Importantly, a statistical model revealed a panel of 11 proteins, which can predict HF in patients with cardiac arrhythmia, with comparable accuracy to BNP. This panel will need to be further validated in independent patient cohorts.

A REVIEW OF MORTALITY IN PATIENTS WHO UNDERGO ICD INSERTION IN A SINGLE IMPLANTATION CENTRE

1P Wheen, 2Z Sharif, 3C Carroll-Lolait, 4D Moore. 1St. James’ Hospital, Dublin, Ireland; 2Beaumont Hospital, Dublin, Ireland; 3Tallaght University Dublin, Ireland

Aims To review the ICD implantation rate in our institution, as well as to assess overall survival following ICD implantation, and to review the rate of early mortality (<1 year) following ICD insertion.

Methods Using the HeartRhythmIreland.com database, where all new ICD implants have been registered since 2005, we obtained information on demographics, implantation date, last registered visit, and notification of death. Date of death was confirmed with our own institution’s electronic patient manager. Survival probability was calculated using the Kaplan-Meier method, using the most recent attended ICD check, or the date of death. Survival was defined as freedom from death at most recent check. (Figure 1).

Results 415 ICDs were implanted in our institution between 2005 and 2018. The mean (mean ± SD) age was 58.9 years (± 14.00) and 333 (80.2%) of the patients were