40 A PROTEIN BIOMARKER MODEL FOR DETECTION OF CARDIAC ARRHYTHMIA AND PREDICTION OF ASSOCIATED HEART FAILURE

1C Tony, 2K McDonald, 3H Ledwidge, 4B Hernandez, 5N Gilezva, 6C Rooney, 7B Morrissey, 8P Pennington, 9J Baugh, 10C Watson, 11Queen's University Belfast, UK; 12STOP-HF Unit, St. Vincent's University Healthcare Group, Dublin, Ireland; 13Conway Institute University College Dublin, Ireland; 14Heartbeat Trust, Dublin, Ireland

Introduction Cardiac arrhythmia is strongly linked with heart failure (HF) and a primary cause of stroke. The condition affects around 37,000 people in Northern Ireland although it is estimated that many thousands more remain undiagnosed. It is important to be able to diagnose cardiac arrhythmia early, so that appropriate interventions can be made to reduce risk of subsequent stroke or HF. Currently, diagnosis and management of cardiac arrhythmia is reliant on assessment of clinical risk factors, however, routine monitoring of circulating biomarkers would significantly improve accuracy for prediction of arrhythmia and associated adverse events. The aim of this study was to (i) identify protein biomarkers, which can predict cardiac arrhythmia and (ii) identify protein biomarkers that are predictive of HF in patients with arrhythmia.

Methods Multiple Reaction Monitoring mass spectrometry-based assays were developed for measurement of a selection of candidate protein biomarkers of cardiovascular injury. Assays were developed using nanoflow reverse phase C18 chromatographic ChipCube based separation, coupled to an Agilent 6460 triple quadrupole mass spectrometer. Optimised MRM assays were applied, in a sample blinded manner, for analysis of a cohort of 410 serum samples. This included 112 patients with cardiac arrhythmia as well as matched controls without cardiac arrhythmia.

Results MRM assays were established for measurement of 25 proteins. Individually, a number of the biomarker proteins show significant differential expression between patients with and without cardiac arrhythmia. An 11-protein biomarker model was identified, which was comparable to BNP in prediction of HF within the cardiac arrhythmia subset of patients (Protein panel AUC = 0.856 vs BNP AUC = 0.838). Combination of the 11 proteins with BNP notably enhanced the predictive capacity of BNP (AUC = 0.899).

Conclusions/Implications Through this study, assays have been developed for robust, multiplexed measurement of 25 cardiovascular disease-associated proteins in patient serum samples. A number of proteins were identified, which show significant expression changes in association with cardiac arrhythmia and will be further explored. Importantly, a statistical model revealed a panel of 11 proteins, which can predict HF in patients with cardiac arrhythmia, with comparable accuracy to BNP. This panel will need to be further validated in independent patient cohorts.

41 A MULTI-CENTRE ANALYSIS OF THE RATES OF GUIDELINE-DIRECTED IMPLANTABLE CARDIAC DEFIBRILLATOR IMPLANTATION FOR HEART FAILURE WITH REDUCED EJECTION FRACTION: COMPARING CENTRES WITH AND WITHOUT ELECTROPHYSIOLOGY SERVICES

1S Keane, 2T Gallen, 3J Murphy, 4J Carron, 5M Elmadi, 6S Quinn, 7Galway University Hospital, Galway, Ireland; 8Mater Misericordiae Hospital, Dublin, Ireland

Introduction Implantable Cardiac Defibrillators (ICD) are a potentially lifesaving therapy inserted for multiple indications. The indications for insertion of ICDs are stated in the European Society of Cardiology guidelines, and American Heart Association guidelines. One of the most common indications is for implantation in heart failure with reduced ejection fraction (HFrEF). These include patients with New York Heart Association (NYHA) Class I-II in patients with ischaemic cardiomyopathy (ICM) and NYHA Class II-III in patients with non-ischaemic cardiomyopathy (NICM).

Methods We compared two major tertiary referral centres, one of which has the largest Electrophysiology (EP) service in the country, with the other currently having no EP physician. We obtained a list of all patients who attended the respective Heart Failure Clinics for a year from the 1st of January 2018 to the 31st of December 2018. We then excluded patients with ejection fraction (EF) of >35% by examining the relevant patients’ echocardiogram reports.

Results In Heart Failure Clinic in Hospital A (with an EP service), 172 patients attending the heart failure clinic had an EF less than or equal to 35%. Of those, 116 had an ICD (67.4%); 88 with an ICD and 28 with a Cardiac Resynchronization Therapy – Defibrillator (CRT-D). 56 patients did not have ICD/CRT. In Hospital B (without an EP service), 174 patients attending the heart failure clinic had an EF less than or equal to 35%. 83 of these patients had an ICD (47.7%). Of those, 56 had an ICD and 27 had a CRT-D. We report a significant difference of 19.7% (p=0.0002) between two large tertiary referral centres in the rate of guideline-directed ICD implantation (figure 1).

Conclusion The availability of an electrophysiology service in a hospital may improve the rates of guideline-directed ICD implantation for heart failure with reduced ejection fraction. This hypothesis warrants further investigation in larger studies.

42 A REVIEW OF MORTALITY IN PATIENTS WHO UNDERGO ICD INSERTION IN A SINGLE IMPLANTATION CENTRE

1P Wheen, 2Z Sharif, 3C O’Carroll-Lolait, 4D Moore. 1St. James’s Hospital, Dublin, Ireland; 2Beaumont Hospital, Dublin, Ireland; 3Tallaght University Dublin, Ireland

Introduction Implantable Cardiac Defibrillators (ICD) are a potentially lifesaving therapy inserted for multiple indications. The indications for insertion of ICDs are stated in the European Society of Cardiology guidelines, and American Heart Association guidelines. One of the most common indications is for implantation in heart failure with reduced ejection fraction (HFrEF). These include patients with New York Heart Association (NYHA) Class I-II in patients with ischaemic cardiomyopathy (ICM) and NYHA Class II-III in patients with non-ischaemic cardiomyopathy (NICM).

Methods We compared two major tertiary referral centres, one of which has the largest Electrophysiology (EP) service in the country, with the other currently having no EP physician. We obtained a list of all patients who attended the respective Heart Failure Clinics for a year from the 1st of January 2018 to the 31st of December 2018. We then excluded patients with ejection fraction (EF) of >35% by examining the relevant patients’ echocardiogram reports.

Results In Heart Failure Clinic in Hospital A (with an EP service), 172 patients attending the heart failure clinic had an EF less than or equal to 35%. Of those, 116 had an ICD (67.4%); 88 with an ICD and 28 with a Cardiac Resynchronization Therapy – Defibrillator (CRT-D). 56 patients did not have ICD/CRT. In Hospital B (without an EP service), 174 patients attending the heart failure clinic had an EF less than or equal to 35%. 83 of these patients had an ICD (47.7%). Of those, 56 had an ICD and 27 had a CRT-D. We report a significant difference of 19.7% (p=0.0002) between two large tertiary referral centres in the rate of guideline-directed ICD implantation (figure 1).

Conclusion The availability of an electrophysiology service in a hospital may improve the rates of guideline-directed ICD implantation for heart failure with reduced ejection fraction. This hypothesis warrants further investigation in larger studies.