Heartbeat: an increase in preventable cardiovascular deaths during the COVID-19 pandemic due to avoidance of medical care

doi:10.1136/heartjnl-2020-318759

Catherine M Otto

Patients with cardiovascular disease (CVD) have an increased mortality risk with COVID-19 infection yet several studies have shown fewer hospital-based CVD diagnoses and procedures during the COVID-19 pandemic. In this issue of Heart, Wu and colleagues1 show that despite a decrease in the number of patients presenting with an acute CVD event there was an 8% excess of CVD deaths in England between March and June 2020 (during the COVID-19 pandemic), compared with the previous 6 years (figure 1). About ½ of these deaths occurred outside the hospital with the most frequent causes of CVD death being stroke (35.6%), acute coronary syndrome (24.5%), heart failure (23.4%) pulmonary embolism (9.3%) and cardiac arrest (4.6%). Most of these deaths were not related to a known COVID-19 infection, suggesting they were most likely due to delays in seeking medical care or undiagnosed COVID-19 infection.

As Singh and Newby2 emphasise in an editorial: 'the evidence presented by Wu and colleagues1 provides us with an important message to our patients and society: it is important to seek emergency medical attention for symptoms indicative of serious life-threatening cardiovascular disease even during the height of the pandemic. Here, the risk of fatal stroke and myocardial infarction outweighs the COVID-19 risk to the patient, and the healthcare system had capacity within acute specialties outside of the intensive care and dedicated COVID-19 units to provide life-saving treatments. This ultimately begs the question: is the fear of disease worse than the disease itself?'

Another important study in this issue of heart describes a 12-year cohort study of 419 patients with infective endocarditis in South Korea.3 Overall, hospital mortality was 14.6% with risk factors for mortality including aortic valve infection, Staphylococcus aureus, neurological complications multi-organ failure, and an increased number of comorbidities. Surgical intervention was associated with a markedly lower risk of in-hospital mortality (OR 0.25, p<0.001) and improved long-term outcomes (figure 2).

‘We could (and should) do better’ in preventing and treating infective endocarditis plead Scully et al.4 They conclude that: ‘As the present data from South Korea demonstrate, IE remains associated with poor outcomes and its incidence is increasing in many countries around the world. Greater public health awareness is warranted alongside renewed emphasis on education of patients at risk (with particular regard to prompt symptom reporting and maintenance of good oral and cutaneous hygiene), early diagnosis, timely referral and specialist care. Once suspected or diagnosed, early involvement of a dedicated Endocarditis Team is essential in managing these patients combined with early, appropriate antibiotic therapy and decisions regarding the need for surgery and its timing.’

Another interesting paper in this issue of Heart by Onishi and colleagues5 describes the diagnosis and outcomes of triglyceride deposit cardiomyovascularopathy (TGV) which is seen in about 20% of haemodialysis patients with suspected coronary artery disease. At median follow-up of 4.7 years, the composite primary endpoint of CVD death, non-fatal myocardial infarction and non-fatal stroke occurred in 52.3% of the TGV patients compared with 27.3% in those with probable TGV and 9.1% of the non-TGV patients. In the accompanying editorial, Nakajima6 explains the causes of TGV and discusses the diagnostic approach. In brief, ‘The principal disorder in TGV is defective intracellular lipolysis, which causes excessive triglyceride accumulation in
the myocardium and coronary artery vascular smooth muscle cells, leading to heart failure and coronary artery disease with a poor prognosis. Diagnosis is based on the presence of impaired long-chain fatty acid metabolism or triglyceride deposition in the myocardium in combination with clinical major and minor criteria and supportive items.

Readers will also want look at the review article on the emerging mechanistic models that link atrial fibrosis, atrial fibrillation and stroke given the implications of these models for new approaches to prevention of adverse clinical events (figure 3). Boyle et al outline ‘a vision of a future paradigm integrating simulations in formulating personalised treatment plans for each patient.’

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

Patient consent for publication Not required.

Provenance and peer review Commissioned; internally peer reviewed.

This article is made freely available for use in accordance with BMJ’s website terms and conditions for the duration of the covid-19 pandemic or until otherwise determined by BMJ. You may use, download and print the article for any lawful, non-commercial purpose (including text and data mining) provided that all copyright notices and trade marks are retained.

© Author(s) (or their employer(s)) 2021. No commercial re-use. See rights and permissions. Published by BMJ.

To cite Otto CM. Heart 2021;107:89–90.

Heart 2021;107:89–90.
doi:10.1136/heartjnl-2020-318759

ORCID iD

Catherine M Otto http://orcid.org/0000-0002-0527-9392

REFERENCES

4 Scully FR, Woldman S, Prendergast BD. Infective endocarditis: we could (and should) do better. Heart 2021;107:96–8.

