Pregnancy outcome in thoracic aortic disease data from the Registry Of Pregnancy And Cardiac disease

Laurence Campens 1, Lucia Baris, 2 Nandita S. Scott, 3 Craig S Broberg, 4 Antione Bondue, 5 Guillaume Jondeau, 6 Jasmine Grewal 1, 7, Mark R Johnson, 8 Roger Hall, 9 Julie De Backer 1, 10 Jolien W Roos-Hesselink 1, 2 On behalf of the ROPAC investigators group

ABSTRACT
Background Cardiovascular disease is the leading cause of death during pregnancy with thoracic aortic dissection being one of the main causes. Thoracic aortic disease is commonly related to hereditary disorders and congenital heart malformations such as bicuspid aortic valve (BAV). Pregnancy is considered a high risk period in women with underlying aortopathy.

Methods The ESC EORP Registry Of Pregnancy And Cardiac disease (ROPAC) is a prospective global registry that enrolled 5739 women with pre-existing cardiac disease. With this analysis, we aim to study the maternal and fetal outcome of pregnancy in women with thoracic aortic disease.

Results Thoracic aortic disease was reported in 189 women (3.3%). Half of them were patients with Marfan syndrome (MFS), 26% had a BAV, 8% Turner syndrome, 2% vascular Ehlers-Danlos syndrome and 11% had no underlying genetic defect or associated congenital heart defect. Aortic dilatation was reported in 58% of patients and 6% had a history of aortic dissection. Four patients, of whom three were patients with MFS, had an acute aortic dissection (three type A and one type B aortic dissection) without maternal or fetal mortality. No complications occurred in women with a history of aortic dissection. There was no significant difference in median fetal birth weight if treated with a beta-blocker or not (2960 g (2358–3390 g) vs 3270 g (2750–3570 g), p value 0.25).

Conclusion This ancillary analysis provides the largest prospective data review on pregnancy risk for patients with thoracic aortic disease. Overall pregnancy outcomes in women with thoracic aortic disease followed according to current guidelines are good.

INTRODUCTION
Aortic complications during pregnancy are particularly a concern in women with underlying connective tissue diseases such as Marfan syndrome (MFS), vascular Ehlers-Danlos syndrome (vEDS), Loes-Dietz syndrome (LDS) and SMAD3 aortopathy, but also women with Turner syndrome (TS) and congenital heart malformations like bicuspid aortic valve (BAV) may be more prone. 1, 2

Data obtained from the GenTAC registry on MFS show a significantly higher aortic dissection rate of 5.4 per 100 person-years during pregnancy and the postpartum period compared with a non-pregnancy dissection rate of 0.6 per 100 patient-years. 3 However, data on the immediate and long-term effects of pregnancy on aortic outcome are not uniform due to publication and ascertainment biases, reports on small sample sizes and inclusion of women in whom dissection was the first presentation of the underlying disease. 1, 2

Multiple factors impact the aorta during pregnancy. Increased haemodynamic stress and structural changes of the vascular wall may weaken the aortic wall in pregnant women with aortopathies. 4–6 The increased risk for aortic complications persists in the postpartum period, but clear management guidelines for this period are lacking.

Current guidelines advocate the use of beta-blockers in women known with underlying aortic disease throughout pregnancy to prevent complications, but the evidence supporting this is weak and the effect on fetal growth needs further research. 7 Atenolol has been associated with higher rates of fetal growth retardation. In contrast, metoprolol, labetalol, bisoprolol, propranolol and celiprolol in case of vEDS may be used safely during pregnancy, although caution with regard to fetal growth remains warranted. 7

Use of large prospective datasets can help in addressing these specific issues and in determining the impact of pregnancy in women with aortic disease. In 2007, the Registry Of Pregnancy And Cardiac disease (ROPAC) was established by the EUROObservational Research Programme (EORP) of the European Society of Cardiology (ESC) in order to provide contemporary information on the impact of pregnancy on a wide range of cardiovascular diseases. With this ancillary analysis, we aim to study the pregnancy outcome of women with thoracic aortic disease.

METHODS
The rationale and design of the ROPAC have been described previously. 8 In brief, the registry started in January 2007. Women with structural heart disease from 60 hospitals in 28 countries (both developed and developing countries) were enrolled. It collected the following data relating directly to the pregnancy: age at conception, cardiovascular complications, obstetric complications, medication use, pregnancy duration and mode of delivery.
In this substudy, we focus on patients with aortic disease including (1) women with known heritable thoracic aortic disease (HTAD) in particular MFS, vEDS or T5 or with BAV (not associated with one of the former conditions) with and without aortic dilatation/dissection and (2) women without one of the prespecified HTAD or BAV, but with aortic dilatation or previous aortic dissection, grouped under the term ‘Thoracic Aortic Dilatation/Dissection—TAD’. Because no specification of the exact location of aortic dilatation was requested in the questionnaires, we used the term ascending aorta throughout the paper referring to the ascending part of the thoracic aorta comprising both the root and tubular ascending aorta. No cutoff values for aortic dilatation were given in the questionnaires where the indication of aortic dilatation was left to the discretion of the including physician.

The following endpoints were studied: death; cardiovascular events: aortic dissection (type A and B), need for aortic surgery or intervention; obstetric complications: pregnancy-induced hypertension, (emergent) caesarean section (CS), premature birth and small for gestational age.

Details on ethical approval have been described previously.10

Statistical analysis

Data are presented as mean values and SD if normally distributed and as median with IQR if skewed. Categorical data are presented as count divided by the total number of valid/available data and percentages between brackets. Differences in variables between diagnostic groups were analyzed using t-test, Mann-Whitney U test, analysis of variance, Kruskal-Wallis test and χ2 test where appropriate. Data analyses were performed with SPSS V27.0. A p value of <0.05 (two-sided test) was considered significant. Complete-case analysis was performed.

RESULTS

Baseline characteristics

Thoracic aortic disease was reported in 189 out of 5739 women (3.3%) included in the registry from 2007 until 2018. More than half of these were patients with MFS followed by patients with BAV. Prior to pregnancy, ascending aortic dilatation was documented in 81 patients, in 49 cases no data were available (Tables 1 and 2). Eleven patients had a history of aortic dissection—10 type A dissections (5 patients with MFS and 5 patients with TAD of which 2 had a traumatic dissection) and 1 type B dissection in a patient with vEDS. Data on the extent of the dissection and type of surgery was not available. One patient with VEDS underwent stenting for a ruptured superior femoral artery 1 year before pregnancy. Seventeen women underwent a valvular intervention prior to pregnancy of which seven had a mechanical valve (one mitral and six aortic valves (one Bentall)). In five patients, prior valve sparing ascending aortic replacement was indicated in the questionnaire.

Data on left ventricular function were reported in 119 cases of which 3 (2.5%) had a decreased ejection fraction prior to pregnancy. Two of these had a mildly impaired ejection fraction of 49% and 50%, respectively (one patient with MFS and one patient with TAD) and one patient with MFS had a moderate reduced ejection fraction of 35% treated with furosemide and a beta-blocking agent preconception.

Forty-nine per cent (20/41) and 51% (21/41) of the women with MFS known to have aortic dilatation were treated with a beta-blocking agent preconception and during pregnancy, respectively. Two out of the four included patients with vEDS were on beta-blockers (but none on celiprolol). Five women

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Number included</th>
<th>MFS</th>
<th>BAV</th>
<th>TS</th>
<th>vEDS</th>
<th>TAD</th>
<th>Total</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (median (IQR))</td>
<td>29.1 (25.4–32.8)</td>
<td>31.1 (25.4–34.3)</td>
<td>30.2 (27.6–34.3)</td>
<td>28</td>
<td>31.5 (28.5–36.5)</td>
<td>31.5 (29–36.9)</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>Nulliparity</td>
<td>57/100 (57%)</td>
<td>18/48 (38%)</td>
<td>10/16 (63%)</td>
<td>2/4 (50%)</td>
<td>12/20 (60%)</td>
<td>99/188 (53%)</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>Arterial hypertension</td>
<td>12/97 (12%)</td>
<td>3/48 (6%)</td>
<td>4/16 (25%)</td>
<td>1/4 (25%)</td>
<td>4/19 (21%)</td>
<td>24/184 (13%)</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>Smoking (ever/former)</td>
<td>4/1076</td>
<td>1-636</td>
<td>0-315</td>
<td>1-04</td>
<td>0-013</td>
<td>6-9114</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>BMI (median (IQR))</td>
<td>22 (20.4–24.7)</td>
<td>25.3 (21.9–30.7)</td>
<td>27.3 (24.3–30.8)</td>
<td>22.4 (20–29.4)</td>
<td>24.5 (22.2–26.5)</td>
<td>24.5 (22,2–26.5)</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Emerging country</td>
<td>19/100 (19%)</td>
<td>18/49 (37%)</td>
<td>16/7 (66%)</td>
<td>3/04</td>
<td>3/20 (15%)</td>
<td>40/189 (21%)</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Aortic dilatation</td>
<td>41/59 (69%)</td>
<td>24/52 (57%)</td>
<td>1/6 (16%)</td>
<td>0/3</td>
<td>15/20 (75%)</td>
<td>81/140 (58%)</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Dimension AA in mm (median (IQR))</td>
<td>40 (35–45)</td>
<td>42 (40–44.3)</td>
<td>42 (42–42)</td>
<td>/</td>
<td>41.5 (39.3–46.8)</td>
<td>42 (38–45)</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>Prior aortic dissection</td>
<td>5/100 (5%)</td>
<td>0/42</td>
<td>0/16</td>
<td>1/4 (25%)</td>
<td>5/20 (25%)</td>
<td>11/182 (6%)</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>10/11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>4/5</td>
<td>1/1</td>
<td>2/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAV</td>
<td>4/96 (4%)</td>
<td>49</td>
<td>1/16 (6%)</td>
<td>0/4</td>
<td>0</td>
<td>54/185 (29%)</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Valvular intervention</td>
<td>9/94 (26%)</td>
<td>6/17 (35%)</td>
<td>0/3</td>
<td>0/1</td>
<td>2/9 (22%)</td>
<td>17/64 (27%)</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>Aortic</td>
<td>4 (1M, 18, 27)</td>
<td>6 (1M, 28, 29)</td>
<td>/</td>
<td>/</td>
<td>2 (2M)</td>
<td>12 (8M, 28, 29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitral</td>
<td>5 (1M, 18, 37)</td>
<td>/</td>
<td>/</td>
<td>5 (1M, 18, 37)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>BB</td>
<td>2/754 (50%)</td>
<td>5/18 (28%)</td>
<td>4/7 (57%)</td>
<td>2/2 (100%)</td>
<td>6/10 (60%)</td>
<td>49/91 (48%)</td>
<td>0.037</td>
</tr>
<tr>
<td></td>
<td>ACE-I</td>
<td>1/49 (0.02%)</td>
<td>1/18 (0.06%)</td>
<td>0/7</td>
<td>0/13</td>
<td>3/90 (0.3%)</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ARB</td>
<td>1/47 (0.02%)</td>
<td>0/18</td>
<td>0/7</td>
<td>0/13</td>
<td>1/87 (0.01%)</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diuretics</td>
<td>1/49 (0.02%)</td>
<td>0/18</td>
<td>0/7</td>
<td>0/13</td>
<td>0/90</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VKA</td>
<td>4/17 (24%)</td>
<td>4/8 (50%)</td>
<td>0/1</td>
<td>0/10</td>
<td>1/17 (14%)</td>
<td>9/33 (15%)</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Categorical variables are presented as count divided by the total number of valid/available data and percentages between brackets. W, unknown; AA, ascending aorta; ACE-I, ACE inhibitor; ARB, angiotensin receptor blocking agent; BB, beta-blocker; BAV, bioprosthesis; B, mechanical valve; MFS, Marfan syndrome; GAC, oral anticoagulation; R, valve repair; TAD, thoracic aortic aneurysms and dissections; vEDS, vascular Ehlers-Danlos syndrome; VKA, vitamin K antagonist.
Table 2 Baseline characteristics (prior to pregnancy) for patients with and without aortic dilatation

<table>
<thead>
<tr>
<th>Ascending aortic dilatation*</th>
<th>No aortic dilatation†</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=81</td>
<td>N=59</td>
<td></td>
</tr>
<tr>
<td>Age (median [IQR])</td>
<td>31.1 (28.1–34.3)</td>
<td>28.3 (25.7–32.3)</td>
</tr>
<tr>
<td>Nulliparity</td>
<td>42/81 (52%)</td>
<td>31/59 (53%)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>9/81 (10%)</td>
<td>11/59 (19%)</td>
</tr>
<tr>
<td>Smoking (current-former)</td>
<td>1-10/62</td>
<td>3-15/4</td>
</tr>
<tr>
<td>BMI (median [IQR])</td>
<td>23.7 (21.3–27.8)</td>
<td>24.0 (20.5–27.9)</td>
</tr>
<tr>
<td>Aortic diameter</td>
<td>41 (38–46.5)</td>
<td>/</td>
</tr>
<tr>
<td>Prior aortic dissection</td>
<td>3/81 (4%)</td>
<td>5/59 (8%)</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>MIA</td>
<td>5 (1M, 1B, 37)</td>
<td>/</td>
</tr>
<tr>
<td>Treatment</td>
<td>BB</td>
<td>2/749 (55%)</td>
</tr>
<tr>
<td>ACE-I</td>
<td>3/55 (5.5%)</td>
<td>0/30</td>
</tr>
<tr>
<td>ARB</td>
<td>0/47</td>
<td>1/25 (4%)</td>
</tr>
<tr>
<td>Diuretics</td>
<td>1/55</td>
<td>0/30</td>
</tr>
<tr>
<td>VKA</td>
<td>9/32 (39%)</td>
<td>0/9</td>
</tr>
</tbody>
</table>

Categorical variables are presented as count divided by the total number of available data and percentages between brackets.

*Presence of aortic dilatation at moment of inclusion.
†Data on aortic dilatation were missing in 49 cases.

Table 3 Characteristics of patients presenting with aortic dissection during pregnancy

<table>
<thead>
<tr>
<th>Pregnancy duration</th>
<th>Type of dissection</th>
<th>Diagnosis</th>
<th>AA diameter</th>
<th>Therapy during pregnancy (prior to dissection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1</td>
<td>26 weeks</td>
<td>A</td>
<td>?</td>
<td>60 mm, None</td>
</tr>
<tr>
<td>Patient 2</td>
<td>37 weeks</td>
<td>B</td>
<td>MFS (known)</td>
<td>45 mm, BB</td>
</tr>
<tr>
<td>Patient 3</td>
<td>37 weeks</td>
<td>A</td>
<td>MFS (not known)</td>
<td>55 mm, None</td>
</tr>
<tr>
<td>Patient 4</td>
<td>1 week pp</td>
<td>A</td>
<td>MFS (not known)</td>
<td>? , None</td>
</tr>
</tbody>
</table>

7, unknown; AA, ascending aortic; BB, beta-blocking agent; MFS, Marfan syndrome; pp, postpartum.

Aortic and vascular disease

Cardiovascular complications

Four patients (2%) had an acute aortic dissection during pregnancy or in the postpartum period. Three were type A dissections requiring urgent surgical intervention and one type B aortic dissection that was treated conservatively. There was no maternal mortality. The patient with the type B dissection had known MFS and was treated with beta-blockers before and throughout pregnancy. Her ascending aorta was moderately dilated up to 43 mm prior to pregnancy with a small insignificant increase of the diameter of 2 mm measured by echocardiography, descending thoracic aortic dimensions were not available. She presented with a type B aortic dissection in the third trimester. The three patients with type A dissections were not known with MFS or aortic dilatation prior to pregnancy and were thus not under medical attention. In two of them, the diagnosis of MFS was made following the acute event. One of them presented with dissection 1 week postpartum (aortic diameter not known) and the second one presented at 37 weeks of gestation, with an ascending aortic diameter of 55 mm. The last patient experienced a type A aortic dissection at an ascending aortic diameter of 60 mm at 26 weeks of gestation. Data are summarised in table 3.

Obstetric and fetal outcome

Overall, we observed a high CS rate of 63% (86/137), but it was not performed more in women with aortic dilatation versus women with normal aortic dimensions (p=0.37). Half (29/58) of the patients with MFS underwent an elective CS and 16% (9/58) urgent CS, (one patient with type A and one with type B aortic dissection, one due to aortic dilatation, five for obstetric reasons). All patients with vEDS (4/4) underwent an elective CS and 69% (11/16) of the women with TS had a CS (7 elective and 4 urgent for non-cardiac reasons). All but one patient with previous aortic dissection had a CS of whom two urgent (one because of fetal distress and one for unknown reason).

No significant difference of pregnancy-induced hypertension or pre-eclampsia was noticed between the different disease groups (total of four women with pregnancy-induced hypertension and four with pre-eclampsia, p=0.68 and p=0.85, respectively).

There were no fetal deaths. The median gestational age was 38 weeks (37–39 weeks). Median birth weight was 2980 g (2660–3450 g) and median birth weight centile11 50th (22–77.5th). There was no significant difference in birth weight and in birth weight centile in women treated with a beta-blocker agent compared with untreated women (2960 g (2358–3390 g) vs 3270 g (2750–3570 g), p value=0.25 and 46.5th (12.5–76th) vs 44th centile (19.5–69th), p value=0.96). No significant differences were found in rates for intrauterine growth retardation or preterm birth.

DISCUSSION

The purpose of the ROPAC registry was to study maternal and fetal outcomes in pregnant women with structural and ischaemic heart disease, pulmonary arterial hypertension and aortic disease. It is the largest prospective dataset to date. Pregnancy outcomes collected over a 10-year period in 5739 pregnancies were recently published.10 Patients with aortic disease constituted a relatively small subgroup within this registry.

The spectrum of thoracic aortic disease included in ROPAC was broad. Half of the women included were patients with MFS who had the highest rate of cardiovascular complications during pregnancy and peripartum period. Despite this, the rate of aortic dissection was low (3/100) in those with MFS and no admissions for congestive heart failure were reported. All three aortic dissections in the patients with MFS occurred during the last trimester or shortly postpartum underscoring the risk for aortic dissection during the peripartum period.1114 Only one of these three patients was known to have MFS prior to pregnancy. This
It is widely accepted to treat pregnant patients with MFS with beta-blockers. The 2018 pregnancy guidelines advise that beta-blocking agents should be considered throughout pregnancy in women with MFS and other HTAD and indicate that it is the preferred therapy in the case of coexistent arterial hypertension. In ROPAC, only 51% of pregnant women with MFS with aortic dilatation were treated with a beta-blocker. Birth weight tended to be lower when the mother had been treated with a beta-blocking agent, although this was not significant. Retrospective data from the UK demonstrate beta-blocker use in 64.2% of pregnant women with MFS with significant lower birth weight in patients on beta-blocking agents. Again, more prospective data are needed in order to draw definite conclusions.

There was a strikingly high rate of delivery by CS in this cohort (63%). All patients with vEDS had an elective CS as recommended by the guidelines. Most Turner women also had a CS for unclear indications, most presumably related to small body size of the mother. There are limited data on the effect of labour, specifically the active phase of labour on the risk of aortic dissection. Although CS is considered an attractive option as it is scheduled and changes of maternal haemodynamics are less compared with labour, vaginal delivery is the preferred mode of delivery in the majority of patients with cardiovascular disease due to lower risk of infection, bleeding and morbidity postpartum. Data recently published by Minsart et al. suggested that vaginal delivery with vigorous pain control and avoidance of the Valsalva manoeuvre might be safe in women with MFS and an aortic root diameter ≤45 mm. However, further research addressing the mode and timing of delivery in TAD is necessary.

A dedicated ROPAC registry (ROPAC 3) for patients with aortic pathology has been initiated recently within the EORP with the aim of more accurately assessing the risks and outcomes during pregnancy. Some important issues, not yet included in ROPAC 1–2, are addressed such as data on aortic growth during pregnancy, dimensions of the distal aorta, details on genetic data and family history of aortic dissection.

CONCLUSION

The aortic dissection rate in women with thoracic aortic disease included in the ROPAC registry was low with good maternal and fetal outcomes. In three out of four women (75%) with aortic dissection, this occurrence was the first presentation of the underlying disease. This highlights the importance of early recognition of the diagnosis and preconception counselling in order to achieve better pregnancy outcome. Type A dissections in patients with MFS occurred at diameters above the 45 mm guideline recommendation, suggesting a relatively safe margin. However, this does not exclude the risk for type B dissections. Complete aortic imaging prior to pregnancy in patients with MFS by CT scanning or MRI is therefore advised. In this registry, the use of beta-blockers was surprisingly low with no significant effect on birth weight, whereas CS rates were high despite lack of supporting data. If a woman after preconception counselling decides to pursue pregnancy despite the risks, close proximity to a tertiary care centre with experienced obstetricians, anaesthesiologists, cardiac surgeons and cardiologists with serial follow-up throughout pregnancy and the postpartum period with an individualised plan for delivery is advised.

LIMITATIONS

ROPAC only includes a small fraction of all the women with MFS or other aortopathy. On the one hand, it may be biased by the overrepresentation of an acute event allowing recognition
of the aortopathy and on the other hand the sample is inherently biased towards aortopathy patients who may inherently be considered more safe for pregnancy.

No genetic or HTAD-specific phenotypic data or details on family history were available in the database. It is likely that the diagnosis of MFS was based on clinical manifestations in some cases. Patients with genetic TAD entities, overlapping with MFS such as LDS or Aneurysm Osteoarthritis Syndrome may have inadvertently been admitted in the MFS group.

A threshold diameter to define aortic dilatation was not specifically defined in the questionnaires, it was only filled in as 'dilatation yes/no' and dimensions were often not provided.

The number of patients with aortic dilatation may therefore be underestimated. Nor was the exact location of aortic dilatation specifically defined in the questionnaires, it was only filled in cases. Patients with genetic TAD entities, overlapping with MFS such as LDS or Aneurysm Osteoarthritis Syndrome may have inadvertently been admitted in the MFS group.

Another limitation is that a registry relays on correct and complete completion of questionnaires by the enrolling centres, data on baseline characteristics are unfortunately missing in some centres. Also data on previous aortic interventions and complications that may have occurred were often not provided.

Author affiliations

1Department of Cardiology, Ghent University Hospital, Gent, Belgium
2Cardiology Department, Erasmus Medical Center, Rotterdam, Netherlands
3Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, USA
4Adult Congenital Heart Disease Program. Knight Cardiovascular Institute, Oregon Health & Sciences University, Portland, Oregon, USA
5Department of Cardiology, CUB Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Brussels, Belgium
6Department of Cardiology, CCRM Syndrome de Marfan et Apparentés, Bichat-Claude Bernard Hospital, Université de Paris, INSERM U1148, Paris, France
7Division of Cardiology, University of British Columbia, Pacific Adult Congenital Heart Disease Clinic, St Paul’s Hospital Vancouver, British Columbia, Canada
8Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Hospital, London, UK
9Department of Cardiology, University of East Anglia, Faculty of Medicine, Norwich Research Park, Norwich, UK
10Center for Medical Genetics, Ghent University Hospital, Gent, Belgium

Twitter Julie De Backer @judjudecker

Acknowledgements EORP oversight Committee, ROPAC Executive Committee (see online supplemental appendix 1). Data collection was conducted by the EORP department from the ESC by Elin Folkesson Lefrançais as Project Officer; Viviane Missiamenou, Gérard Gracia and Sebastien Authier as Data Managers. Overall activities were coordinated and supervised by Dr Aldo P Maggioni (Scientific Coordinator). Data have been presented at the congress of the European Society of Cardiology 2019. Julie De Backer was a senior clinical researcher by the Research Foundation Flanders and by a Grant for Medical Research from the Baillet Latour Funds.

Twitter
Belgrade: L Jovovic; SLOVENIA—Ljubljana: K Prokselj, M Kozej; SOMALILAND—Hargeisa: A O Askar, A A Abdilaahi, M H Mohamed, A M Dirir; SOUTH AFRICA—Cape Town: K Silwa, Houghton: P Manga; SPAIN—Barcelona: A Pijuan-Dominguez, JDB and LC conceived the idea for this study. LC and LB reviewed the study protocol. LC and LB wrote the manuscript. JWR-JW, JDB and LB conceived the idea for this study. LC and LB conducted the data analyses. The initial draft of the manuscript was produced by LC. LC, JDB, LB and JWR-JW were involved in interpreting the results and writing the manuscript. LC and LB act as guarantors. All authors contributed to revising the manuscript critically for important intellectual content and approved the final version of the manuscript.

Funding The study was supported by a grant from The joint European Cardiological Organizations (JECO) (2011–2013), the Swedish Research Council, the Swedish Heart and Lung Foundation, the County Council of Östergötland, the County Council of Stockholm, the County Council of Västernorrland, the County Council of Dalarna, and the County Council of Västra Götaland.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement All data relevant to the study are included in the article as uploaded as supplementary information.

Author note

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs

Laurence Campens http://orcid.org/0000-0002-5045-2449
Jasmine Grewal http://orcid.org/0000-0001-7312-6278
Julie De Backer http://orcid.org/0000-0001-8878-1507
Jolien W Roos-Hessink http://orcid.org/0000-0002-6770-3830

REFERENCES

3 Roman MJ, Pugh NL. Hendershot TP. Aortic complications associated with pregnancy in Marfan syndrome: the NHLBI National Registry of genetically triggered thoracic aortic aneurysms and cardiovascular conditions (GenTAC)… Am Heart Assoc 2016;5:5.
Appendix 1.

EORP Oversight Committee
Christopher Peter Gale, Chair, GB, Branko Beleslin, RS, Andrzej Budaj, PL, Ovidiu Chioncel, RO, Nikolaos Dagres, DE, Nicolas Danchin, FR, David Erlinge, SE, Jonathan Emberson, GB, Michael Glikson, IL, Alastair Gray, GB, Meral Kayikcioglu, TR, Aldo Maggioni, IT, Klaudia Vivien Nagy, HU, Aleksandr Nedoshivin, RU, Anna-Sonia Petronio, IT, Jolien Roos-Hesselink, NL, Lars Wallentin, SE, Uwe Zeymer, DE.

Executive Committee
Roger Hall GB (Co-Chair), Jolien Roos-Hesselink NL (Co-Chair), Joerg Stein, AT, William Anthony Parsonage, AU, Werner Budts, BE, Julie De Backer, BE, Jasmin Grewal, CA, Ariane Marelli, CA, Harald Kaemmerer, DE, Guillaume Jondeau, FR, Mark Johnson, GB, Aldo P. Maggioni, IT, Luigi Tavazzi, IT, Ulf Thilen, SE, Uri Elkayam, US, Catherine Otto, US, Karen Sliwa, ZA.

ROPAC Investigators
