The impact of exercise and diet intervention on left atrial function in type 2 diabetes: Results from a randomised study

Aaseel Alfuhied, Gaurav Gulsin, Eimer Brady, Kelly S Parke, Lavanya Athithan, Gergy McCann, Anvesha Singh, University of Leicester, Leicester, UK; NHF Leicester Biomedical Research Centre, University of Leicester; University Hospitals of Leicester NHS Trust

Introduction The effects of low-energy diet or exercise on cardiovascular function in younger adults with type 2 diabetes (DIASTOLIC) study showed a significant improvement in left ventricle peak early diastolic strain rate in response to a 12-week programme of aerobic exercise in patients with type-2 diabetes (T2D). The impact of exercise and a low-calorie meal replacement plan (MRP) on left atrial (LA) function in T2D has not yet been explored. We investigated the effect of lifestyle intervention on LA volumetric and strain parameters by cardiac magnetic resonance (CMR) imaging.

Methods The DIASTOLIC study was a prospective, randomised, open-label, blind endpoint trial. Obese participants with T2D (aged 18–65 years) were randomised to a 12-week intervention of: aerobic exercise training or low energy (~810kcal/day) MRP. CMR was performed at baseline and week-12. Images were analysed using Medis v3.1. LA strain and strain rate (LAS/SR) were assessed using Feature Tracking (QStrain v2.0), corresponding to LA reservoir (LAS/ SR-r), conduit (LAS/ SR-cd), and booster pump (LAS/ SR-bp) using 4- and 2-chamber standard steady-state free precession cine images, and average values calculated. LA volumes (LAV) were measured on 4 and 2-chamber cine images and LA emptying fraction (LAEF) was calculated using biplane area-length method (QMass v8.1) for total, passive and active EF.

Results 45 participants with T2D completed the trial and had analysable LA cine images (22 exercise and 23 MRP). There were no significant changes in the standard assessment of LA volumetric function (LAV/LAEF) measured on CMR or in LV filling pressure (E/e) measured on echocardiography, in either group. In the MRP group, there were significant reductions in BMI (4.8 kg/m²), mean systolic blood pressure (SBP) (13mmHg), and a significant increase in LAS-r and LAS-bp (29.9±7.0 to 32.3±7.0, p=0.036 and 14.6±5.3 to 17.2±3.7, p=0.034) (see Table). The exercise arm showed a small reduction in BMI (0.8kg/m²), no significant change in BP and a significant improvement in LASR-bp (-1.19±0.3 to -1.32±0.4; p=0.041).

Conclusion A low-calorie MRP led to significant weight loss and improved SBP, with associated improvement in LA reservoir and contractile function on CMR strain assessment. LAS could detect early LA reverse remodelling post-lifestyle intervention in young adults with T2D despite no change in volumetric measurements.

Conflict of Interest None to declare

Background Acute aortic syndrome is a catastrophic condition characterised by medial degeneration and cellular destruction within the aortic wall. 18F-Sodium fluoride (18F-NaF) positron emission tomography (PET) detects microscopic calcification as a marker of disease activity. This proof-of-concept study aims characterise 18F-NaF PET in patients with acute aortic syndrome.

Methods Aortic tissue obtained from patients with acute aortic syndrome was stained using von Kossa stain for calcium-phosphate complexes and then exposed to 18F-sodium fluoride to confirm radiotracer binding to microcalcification. Next, patients with aortic dissection or intramural haematomas and healthy controls underwent 18F-NaF PET/CT and CT angiography of the aorta. A threshold of 12 weeks since diagnosis was used to classify patients to ‘recent’ or ‘prior’ acute aortic syndrome groups. Peak aortic 18F-NaF uptake was corrected for background blood pool activity to obtain a most diseased segment tissue-to-background ratio (MDS TBRmax). Radiotracer binding was compared with aortic size in a linear regression model and major adverse aortic events (aortic rupture, aorta-related death or aortic repair) in a proportional hazards Cox survival analysis.

Results Aortic 18F-NaF uptake co-localized with histologically defined regions of microcalcification (n=15). Patients with acute aortic syndrome had increased 18F-NaF binding compared to healthy controls (TBRmax 2.02±0.42 (n=47) vs 1.36±0.39 (n=20) respectively, p<0.001). Peak radiotracer uptake occurred at the site of intimal disruption (+27.5% compared to the proximal aorta, p=0.001). 18F-NaF binding to the false lumen was associated with aortic growth (+7.1 mm/yr, p=0.011) and uptake in the outer aortic wall was associated with major adverse aortic events (hazard ratio 8.6 [95% CI, 1.1-68.1], p=0.041) in patients with recent acute aortic syndrome.

Conclusion 18F-NaF PET/CT uptake was increased in patients with acute aortic syndrome at sites of disease activity. Radiotracer binding was associated with aortic growth and clinical