events. 18F-NaF PET-CT holds promise as a non-invasive marker of disease severity and future risk in patients with acute aortic syndrome.

Conflict of Interest
None

MULTI-MODALITY IMAGING IN SURVIVORS OF COVID-19
Trisha Singh, Shweta Joshi, Nick Spath, Lucy Kenshaw, Andy Baker, Helen Jordan, Gaurav Gulsin, Michelle Williams, Edwin van Beek, Jayanth Arnold, Semple Scott, David Newby, Marc Dweck, Gerry McCann.
University of Edinburgh, Edinburgh, UK; University of Leicester; Centre for Cardiovascular Sciences, University of Edinburgh

Background Widespread abnormalities of the myocardium have been reported in patients with COVID-19. However, these patients often have substantial co-morbidities and it is essential to understand whether cardiac abnormalities represent pre-existing disease or are the consequence of COVID-19.

Objective To determine the contribution and cardiac impact of co-morbidities in patients who have recovered from COVID-19.

Methods In a prospective observational study, adult patients hospitalized with confirmed COVID-19 were recruited from the Edinburgh Heart Centre between May and November 2020 and compared to healthy and co-morbidity-matched volunteers. Patients underwent gadolinium and manganese-enhanced magnetic resonance imaging and coronary computed tomography angiography.

Results Twenty-three patients (54±11 years, 20 male) who recovered from COVID-19 were recruited. Half (n=11, 48%) required admission to the intensive care unit and a third (n=7, 31%) received non-invasive or invasive ventilation. Patients had a high prevalence of known cardiovascular disease (n=18, 78%), associated risk factors (n=11, 45%) and coronary artery disease (n=8, 35%). Compared with younger healthy volunteers (n=10), myocardial native T1 values (1202±25 versus 1162±27 ms, P=0.008, figure 1) and extracellular volume fraction (31.9±1.7 versus 29.8±0.5 %, P=0.001, figure 1) were higher with no differences in manganese uptake. Compared to co-morbidity-matched volunteers (n=20), there were no differences in native T1 values (1202±25 versus 1196±39 ms, P=0.61, figure 1), extracellular volume fraction (31.9±1.7 versus 31.0±0.5 %, P=0.11), presence of late gadolinium enhancement or manganese uptake. These findings remained irrespective of COVID-19 disease severity, presence of concomitant myocardial injury or coronary artery disease.

Conclusions Patients who have recovered following hospitalization with COVID-19 have no evidence of a major excess in myocardial injury or dysfunction compared to co-morbidity-matched volunteers. The presence of co-morbidities likely explains many of the previously reported myocardial abnormalities.

Conflict of Interest
None

FIRST IN VIVO PRETARGETED PET IMAGING OF Atherosclerosis WITH ANTIBODIES AGAINST FORMS OF MODIFIED LIPOPROTEINS
Cinzia Marceddu, Adam Hartley, Mikhail Caga-Anan, Samata Pandey, Yasmine Morris, Dorian Haskard, Jan Passchier, Ramzi Khamis.
Imperial College London, London, UK; Invicro London

Atherosclerosis is a cardiovascular disease initiated by the deposition of Low Density Proteins (LDL) within the intima and