with the hazard of mortality (HR 2.23; 95% CI 1.97 – 2.52). There was a progressive increase in mortality across the strata of hs-cTnI concentration (figure 1). Furthermore the log (10) hs-cTnI concentration was an independent predictor of the hazard of one year mortality (HR 1.77; 95% CI 1.64 – 1.91). The discriminative ability of hs-cTnI for one year mortality was good with an AUC of 0.75 (95%CI 0.73 – 0.76). Further, the log(10) hs-cTnI concentration was independently associated with mortality across all three locations and most strongly in the OPD cohort (IPD HR 1.49; 95% CI 1.33 – 1.67, OPD HR 2.44; 95% CI 1.95 – 3.04, ED HR 1.99; 95% CI 1.76 – 2.25).

Conclusion In a large, unselected hospital population of both in- and out-patients, 18,282 (91.4%) of whom there was no clinical indication for testing, hs-cTnI concentration was independently associated with one year mortality. These data suggest that hs-cTnI may have a role as a biomarker of future risk.

Conflict of Interest Beckman Coulter paid for all of the assays used in our studies but had no other role in the studies.
Correction: 185 Female speaker representation at national cardiology conferences

Dobson R, Appleby C, Pathimagaraj R. 185 Female speaker representation at national cardiology conferences. *Heart* 2021;107:A144. doi:10.1136/heartjnl-2021-BCS.182

This Abstract has been corrected since it was first published. Author name ‘Rachel Pathimagaraj’ has been updated to ‘Rachel H Pathimagaraj’.

© Author(s) (or their employer(s)) 2021. No commercial re-use. See rights and permissions. Published by BMJ.

Heart 2021;107:e9. doi:10.1136/heartjnl-2021-BCS.182corr1