mitochondria was examined in the endothelium in intact blood vessels. In controls, TRPV4 activation with GSK1016790A (GSK) generated repetitive Ca2+ oscillations that required Ca2+ influx. When the ΔΨm was depolarised, by the uncoupler carbonyl cyanide m-chlorophenyl hydrazide (CCCP) or the complex I inhibitor rotenone, TRPV4 activation generated a much larger Ca2+ rise and propagating multicellular Ca2+ waves. The ATP synthase inhibitor oligomycin did not potentiate TRPV4 mediated Ca2+ influx. GSK-evoked Ca2+ waves, that occurred when mitochondria were depolarised, persisted in a Ca2+ free extracellular solution i.e. were independent of Ca2+ influx. These signals were blocked by the TRPV4 channel blocker HC067047 (HC067), the SERCA inhibitor cyclosporin, the phospholipase C (PLC) blocker U73122 and the inositol triphosphate receptor (IP3R) blocker caffeine. These observations suggest that TRPV4 may directly activate Ca2+ release from the internal store. The large propagating waves were inhibited by the pannexin blocker probenecid and the extracellular ATP blockers suramin and apyrase. These results highlight a role for TRPV4 in the development of hypertensive heart disease.

Methods and Results 1Cecilia Facchi, 1Xin Wang, 2Elizabeth Cartwright, 2Delvac Oceandy.
1University of Manchester, Manchester, UK; 2Division of Cardiovascular Sciences, FBMH, University of Manchester

10.1136/heartjnl-2021-BCS.222

Introduction Heart failure (HF) is characterised by an inadequate cardiac pumping ability and is one of the major causes of death worldwide. Numerous conditions lead to HF, such as myocardial infarction (MI). After MI, an extensive death of cardiac cells combined with limited regenerative capacity causes a pathological remodelling of the left ventricle, characterized by substantial fibrosis and hypertrophy. Replacement of damaged tissue or limitation of pathological progression are not achievable with current treatments. Thus, novel therapeutic approaches to address this unmet medical need are still required.

We decided to explore the unknown role of Salt-inducible kinase 2 (SIK2) in cardiac cells to potentially identify a novel target for HF therapy. Recently, this kinase has been identified as a key modulator of Hippo pathway-mediated stimulation of cell proliferation in Drosophila and a putative mediator of cardiac hypertrophy progression in response to chronic high-salt intake.

Methods and Results Firstly, we demonstrated that SIK2 protein is expressed in both fibroblasts and cardiomyocytes. We also identified a variation of its expression during the different developmental stages of the organism, displaying a greater level during the neonatal phase, and an elevated expression during HF progression, underlining the decisive importance of this kinase in myocardial tissue organization and remodelling.

We performed an in-silico analysis to unroll the mediators of this effect, which suggested that SIK2 activity is mainly mediated by either Hippo or Akt pathway. Exploiting an adenovirus overexpression system, we observed evidence of increased Akt phosphorylation levels. We also found that SIK2 overexpression in primary neonatal rat cardiomyocytes causes activation of LATS, one of the main components of the Hippo pathway, suggesting a potential SIK2-mediated regulation of the Hippo pathway. These alterations did not cause...
changes in survival rate or cell proliferation. However, it clearly promoted the induction of cell hypertrophy.

Conclusion In summary, these preliminary data suggest that SIK2 might modulate the hypertrophic response of cardiac tissue during pathological insults.

Conflict of Interest No

BS25

TAM RECEPTOR AXL LOSS REGULATES SMOOTH MUSCLE CELL DIFFERENTIATION AND ACCELERATES ATHEROSCLEROSIS IN MICE

1Lucy Michena, 1Danila Gurgone, 1Abdulatif Mohammed Bin-Khunayn, 2Eva Crespo, 1Gianluca Grassia, 3Neil Meditchie, 1Mauro Giacca, 1Lorena Zentilin, 1Gilkeria Karadimou, 1Gabrielle Paulsson-Berne, 1Pedur S Olufson, 1Thomas O Otto, 1Tomasz J Guzik, 1Mariola Kurowska-Stolarska, 1Pasquale Maffia. 1Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK; 1Institute of Cardiovascular and Medical Sciences, University of Glasgow; 1School of Cardiovascular Medicine & Sciences, King’s College London British Heart Foundation Centre; 1Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB); 1Center for Molecular Medicine, Karolinska Institutet

10.1136/heartjnl-2021-BCS.223

Introduction The TAM receptors (Tyro3, Axl, and MerTK) are a distinct family of three receptor tyrosine kinases, namely Tyro3, Axl and MerTK, which play critical roles in cancer, inflammatory disorders and cardiovascular diseases. Axl, in particular, has been shown to influence multiple aspects of cardiovascular pathology via diverse effects on cells of both the vasculature and immune system through regulation of vascular remodelling, effecoryosis and inflammation. Clinical studies have shown that Axl is detectable in atherosclerotic plaques; however, the causal relationship between Axl and atherosclerosis is still uncertain, and results from mouse models fell short of defining the specific role(s) of Axl in the disease process.

Methods In order to quantify Axl expression in carotid endarterectomy atherosclerotic plaques we examined data from the Biobank of Karolinska Endarterectomy (BiKE). Using single-cell RNA sequencing (scRNA-seq) data from published atherosclerosis datasets we determined which cell types express Axl during pathology. Finally, we utilised an inducible atherosclerosis model in order to assess atherosclerosis formation in global Axl-deficient mice (Axl-/-).

Results We found expression of Axl in human carotid plaque to be significantly reduced in comparison to healthy control tissue (P=1.96e-06) in the BiKE cohort. Similarly, we detected less Axl RNA expression in the aortas of WD-fed apolipoprotein-E/- mice compared to WT (P<0.05). Analysis of published scRNA-seq databases found that Axl is expressed predominantly in the vascular smooth muscle cell (VSMC) compartment of the aortas in both healthy and atherosclerotic mice, with expression also observed in fibroblasts and macrophages. Global Axl-deficiency increased lesion size in the aortic sinus (P<0.001). While collagen content and necrotic core were not affected. ScRNA-seq on the aortas showed a switch versus a less contractile smooth muscle cell phenotype in Axl/- mice compared to WT.

Conclusions In conclusion, our results indicate a protective role for Axl in atherosclerosis. The TAM receptor is reduced in diseased vessel compared to healthy controls in both human and mouse. Furthermore, global knock-out resulted in significantly increased plaque burden in mice. The necrotic core was not found to be influenced by Axl, suggesting that TAM receptor-mediated effecoryosis is not a key contributor to the role of Axl in atherosclerosis. Axl was found to be predominantly expressed in the VSMC compartment in the aortas of both healthy and diseased mice. Furthermore, Axl deficiency promoted VSMC phenotypic switching. These data support the hypothesis of a beneficial role of Axl in atherosclerosis via modulation of smooth muscle cell phenotype.

Conflict of Interest none

BS26

THE PARTNERSHIPS IN CONGENITAL HEART DISEASE IN AFRICA STUDY (PROTEA): CLINICAL CHARACTERISTICS AND GENETIC FINDINGS FROM A SOUTH AFRICAN CONGENITAL HEART DISEASE COHORT

1Timothy Spracklen, 1Thomas Aldersley, 1Nicole Saards, 1Bianca de Koning, 1John Lawrenson, 1Paul Human, 1James Eales, 1Blanche Cupido, 1George Comitis, 1Rik De Decker, 1Bernard Faurie, 1Lenise Swanson, 1Alexia Joachim, 1Phaphama Magadla, 1Malebogho Ngpepe, 1Liam Swanson, 1Alistair Rewell, 1Raj Ramesar, 1Gannat Shabbordien, 1Andre Brooks, 1Karen Silva, 1John Anthony, 1Ayeshha Osman, 1Bernard Keayeen, 1Lucie Zulikova, 1University of Cape Town, Cape Town, South Africa; 2University of Manchester; 1University of Stellenbosch

10.1136/heartjnl-2021-BCS.224

Introduction Congenital heart disease (CHD) is the most common birth defect and a significant cause of paediatric morbidity and mortality worldwide. Epidemiological data from Africa are lacking, although this information is of importance in determining the burden of CHD and guiding policy. As a multifactorial disease, the role of genetic factors in CHD is increasingly recognised. However, the genetic contribution to CHD remains relatively unexplored in Africa. The Partnerships in CHD in Africa (PROTEA) project was established to better understand the epidemiology and genetics of CHD in sub-Saharan Africa. The aim of this investigation is to describe the clinical and genetic characteristics of a cohort of CHD patients from the Western Cape, South Africa.

Methods PROTEA is a multicentre, prospective registry of CHD patients, recruited from seven hospitals in the Western Cape, South Africa. Patients with any structural CHD were eligible for inclusion, this excluded patients with isolated patent foramen ovale, peripheral pulmonary stenosis or patent ductus arteriosus in premature infants. Some of these patients were consented into the genetics study, for which a DNA biorepository was established. These patients were investigated using exome sequencing and/or chromosomal microarray (CMA) to identify disease-causing mutations or copy number variants in established CHD genes.

Results A total of 1,473 participants were recruited into the PROTEA registry between April 2017 and March 2019 (median age 1.9 years, 51% male). Compared to international cohorts, ventricular (PR: 1.8, 95%CI: 1.63-1.97) and atrial (PR: 1.4, 95%CI: 1.20-1.57) septal defects were significantly...