training scheme. When asked if a trainee encountered significant challenges in accessing training – CT/MRI, followed by Adult Congenital Heart Disease and Electrophysiology were most frequently identified. Interest in dual accreditation was low, with 77% of respondents saying they did not intend to pursue dual accreditation. Approximately half (47%) of respondents felt that their year spent doing General Internal Medicine (GIM) enhanced their training experience. 46% of respondents felt they had a very good or good quality of life. Future career planning: 83% of trainees indicated definitely or probably when asked if planning to work in Ireland. However, when in 2018, a small number of trainees on overseas out of program experience were asked the same question a smaller proportion of respondents indicated that they wished to work in Ireland. In relation to gender – 28% of respondents were female, in keeping with prior work published by the authors in 2017 showing a 7:3 gender ratio overall for trainees between 1998 and 2017. To address the gender balance respondents felt that changes to the training scheme (63%) and work practices (72%) would be needed. Covid-19 had a marked affect on training, with 94% of trainees responding that it adversely affected their training.

Conclusion This 4 year study of the Irish cardiology trainees gives important insights into the strengths and weaknesses of the training scheme. It highlights the impact due to the current Covid-19 pandemic on training. It also gives valuable information regarding the future career goals of current trainees. All of the above, should be useful in the framing and shaping of any discussion regarding the future of cardiology training and service delivery in Ireland in the decades to come.

Introduction 3D printing is now cost effective and, with specialist companies handling the complexity of making models, it is now relatively easy to get an accurate surgical model printed. Simulation surgery is now becoming a reality to highlight areas of concern in an operation. Some orthopaedic surgeons are using models to practice the operation before ever laying a hand on a patient, so the authors wanted to investigate if 3D printed models would help with planning and communication in adult cardiac surgery.

Methods A local company who prints 3D medical models was given a stimulus grant to from June 2020 to March 2021. They were able to offer models for free to local specialist surgery departments. When the surgery was complete an online assessment form was completed to review the helpfulness of the models, and all of these forms were collated from the company for the cardiac models ordered during the study period. The data was analysed in Microsoft Excel. CT scans were sent electronically to the company. They created the model using proprietary software and an interactive model was sent to the surgeon using Sketchfab. This was viewed by the requesting surgeon who made changes as necessary. When the model was approved it was then printed. Different materials could be requested differing in flexibility to opacity. The company used Formlabs 2 and Formlabs 3B printers.

Results Sixteen 3D Models were made to aid planning of adult cardiac surgery, 6 for valve surgery, 4 for aortic root surgery, 4 for CABG surgery, 1 for a myxoma and 1 case for post-infarction VSD. In 9 cases (56%), the surgeon changed their plan for the surgery after viewing the model and in 2 cases (12%) it changed the diagnosis. In 15 cases (94%) the model was felt to have a positive effect on patient safety and in all cases it was felt to be helpful for communication with other surgeons and trainees.

Conclusion Our pilot study suggests that 3D printed models have the potential to improve safety and communication in certain types of adult cardiac surgery and merit further study. Link to interactive image https://sketchfab.com/3d-models/p03018-db0590ae83954351877edcc38776e6a2.

Abstract 20 Figure 1 Image of the model as it appears to the surgeon. In the software it is interactive so the surgeon can rotate and if the model is sliced this can be manipulated to allow viewing of the internal structure of the heart model. Link to interactive image: https://sketchfab.com/3d-models/p03018-db0590ae83954351877edcc38776e6a2.

Objectives Modern advances in bioprosthetic valve tissue technology have resulted in the development of newer generation bioprosthetic aortic valves such as the Edwards Lifesciences Inspiris Resilia™ (Inspiris) and the Medtronic® Avalus Bioprosthesis (Avalus).

These claim to exhibit improved hemodynamic sustainability, and prevention from structural valve deterioration, translating into long-term durability; in comparison to bioprosthetic...