Left Ventricular Cine-angiography in Endocardial Cushion Defect*

M. S. GOTSMAN, W. BECK, AND V. SCHRIRE

From the Cardiac Clinic, Department of Medicine, Groote Schuur Hospital, the University of Cape Town and the Cardiovascular-Pulmonary Research Group, Cape Town, South Africa

Endocardial cushion defects are complex malformations with a wide clinical spectrum. The abnormalities range from a small defect of the atrial septum in the position of the ostium primum, with an abnormal cleft mitral valve, to more extensive abnormalities which include tricuspid incompetence and defects of the ventricular septum. In the most severe form a common atrioventricular canal occurs. The pathology determines the clinical and radiological picture (Campbell and Missen, 1957; Wakai and Edwards, 1956; DuShane et al., 1960; Scott et al., 1962).

In general, the defects can be divided into two clinical groups (Barnard and Schrire, 1961). Endocardial cushion defects, without a significant ventricular septal defect, consist of partial absence of the lower portion of the atrial septum and a cleft mitral valve. A small insignificant ventricular septal defect or cleft tricuspid valve may be present. In defects with a significant ventricular septal defect, the ventricular septal defect dominates the clinical picture, producing a large left-to-right shunt and often severe pulmonary arterial hypertension (Schrire et al., 1963; Schrire and Vogelpoel, 1964). The electrocardiogram usually is diagnostic: it shows left axis deviation (−30° to −120°), a counterclockwise or figure-of-eight vector loop in the frontal plane, incomplete right bundle-branch block, and often a long P–R interval (Toscano-Barbosa, Brandenburg, and Burchell, 1956; Toscano-Barbosa, Brandenburg, and Swan, 1958).

Cardiac catheterization is mandatory, but, unless it is undertaken with care, may not add much to the clinical findings. The presence of an endocardial cushion defect without a significant ventricular septal defect is confirmed by demonstrating a large left-to-right shunt at atrial level, normal or sub-normal pulmonary vascular resistance, typical low passage of the catheter across the defect, and very similar drainage pathways of the pulmonary veins from each lung (Swan et al., 1956; DuShane et al., 1960; Braunwald, Lombardo, and Morrow, 1960). Left atrial cine-angiography may add further information (Coelho, de Paiva, and Nunes, 1961; Gotsman, 1964; Astley, Gotsman, and Parsons, 1965). Defects with a significant ventricular septal defect have the haemodynamic pattern of a large combined ventricular and atrial septal defect, often with severe pulmonary arterial hypertension. Assessment of the degree of mitral and tricuspid incompetence may be difficult.

Recently the value of selective left ventriculography has been reported (Braunwald, Morrow, and Cooper, 1959; Baron et al., 1964; Cornell, 1965; Omeri et al., 1965; Girod et al., 1965; Rubinstein et al., 1966). We have undertaken left ventricular cine-angiography routinely and have confirmed that certain features occur only in patients with an endocardial cushion defect.

This paper analyses the left ventricular cine-angiogram in 13 patients and relates the findings to the abnormal embryology and anatomy.

RESULTS

The ages of the 13 patients ranged from 6 months to 45 years and 12 were children under the age of 15. The diagnosis was confirmed at operation in 10. These 10 had a low defect of the atrial septum and a cleft mitral valve. Five also had a cleft tricuspid
Left Ventricular Cine-angiocardiography in Endocardial Cushion Defect

Left Ventricular Cine-angiocardiography in Endocardial Cushion Defect

Abnormal Left Ventricular Cine-angiocardiogram (Fig. 1 and 2). The deformed heart produced a characteristic appearance in the antero-posterior position. When the cardiac catheter was passed retrogradely from the aorta it was displaced to the left immediately below the aortic valve: the gentle curve concave to the left seen in the normal subject was altered, giving the catheter an elongated S-shaped profile.

The most important feature was an abnormal shape and configuration of the outflow tract. The normal left ventricle has a smooth ovoid contour, with the mitral and aortic valve orifices appearing as two chords of the ovoid. This shape was altered in every patient: the ventricle was divided into two halves—a smaller ovoid body and a narrow elongated outflow tract leading to the aortic valve. Abnormal anterior and apical displacement of the mitral valve encroached on the posterior and medial walls of the

Fig. 1.—Selective left ventricular cine-angiocardiography of a 3-year-old boy with a small endocardial cushion defect, 30 per cent left-to-right shunt, trivial mitral incompetence, and mild additional coarctation of the aorta. (a) Antero-posterior view, early diastole: mitral valve is opening and shows the “goose-neck” deformity of the outflow tract (arrow). (b) Antero-posterior view, systole: pouting lips are formed by the superior and inferior halves of the cleft anterior cusp of the mitral valve (arrow). (c) Left anterior oblique position, systole: cleft mitral valve seen again; trivial mitral incompetence evident (arrow).
Fig. 2.—Selective left ventricular cine-angiography of a 5-year-old child with an endocardial cushion defect, cleft tricuspid and mitral valves, normal ventricular septum, and 70 per cent left-to-right shunt. (a) Antero-posterior view, diastole: the abnormal superior position of the cleft anterior leaflet of the mitral valve indents the outflow tract of the left ventricle, producing a typical “swan” or “goose-neck” deformity. The inferior part of the cleft cusp is also seen. The posterior leaflet is seen en face and is not distinct. (b) Antero-posterior view, systole: the abnormal contour of the left ventricle is shown. The normal ovoid left ventricle is divided into two parts: a rounded body with the mitral valve forming the right free margin, and an elongated narrow outflow tract. (c) Right anterior oblique, systole: the appearances are less specific and are not diagnostic. (d) Left anterior oblique, systole: abnormal pouting of the cleft valve and upper rim of the ventricular septum is again seen clearly. (e) Left anterior oblique, early diastole: “swan-neck” deformity seen again.
outflow tract, with narrowing and elongation of the lumen ("goose" or "swan-neck" appearance). The abnormal contour was demonstrated best during early diastole when a wave of non-opacified blood opened the mitral valve.

Another important finding was the mitral valve, which occupied an abnormal plane and position, with its deformed architecture clearly visible. In the normal subject, the valve is seen in the right anterior oblique position, but in every patient studied the antero-posterior position showed the valve profile best. We performed duplicate left ventricular cine-angiograms in 5 patients to compare the antero-posterior and right anterior oblique positions. The antero-posterior position was always more useful. In health the mitral valve orifice forms only the upper two-thirds of the right free margin of the left ventricle, but in our patients most of the right free margin was formed by the mitral orifice. Thus, during diastole, a large front of non-opacified blood entered the ventricle defining the superior and inferior portions of the left anterior leaflet with the posterior leaflet seen partly en face.

The abnormal architecture of the cleft rolled valve was seen best during systole when the inferior and superior parts of the left anterior cusp bulged into the left atrium. In the milder deformities with minimal mitral incompetence, the junction of the two halves of the anterior cusp formed a small pocket (Fig. 1b). Increasing degrees of mitral incompetence were observed as a positive jet into the left atrium or directly into the right atrium through the endocardial cushion defect. Abnormal mobility of the valve with slight tethering of the cusps by the shortened chordae was also observed during diastole, while in systole it gave the valve a serrated appearance.

The atrial septal defect was shown only in the presence of mitral incompetence when the jet of contrast medium was directed through the left atrium into the right atrium.

A deficiency of the ventricular septum could not be assessed in the antero-posterior position.

Other radiographic positions were also used. The right anterior oblique position had no advantage over the much simpler antero-posterior position. The left anterior oblique position demonstrated the ventricular septal defect in 2 of 3 patients. In the third patient it was uncertain whether contrast passed across the mitral valve into the left atrium and thence into the right atrium and ventricle or whether direct passage occurred across the ventricular septal defect into the right ventricle.

Discussion

Embryology. In the normal foetus three structures form the atrioventricular junction: the septum primum, the endocardial cushions, and the ventricular septum (Fig. 3). The septum primum grows downwards from the postero-superior aspect of the common atrial wall towards the atrioventricular canal, and divides the common atrial chamber into two halves, with the ostium primum as a residual interatrial communication at its lower margin. The endocardial cushions then grow into the lumen of the common atrioventricular canal and fuse, forming the right and left orifices (tricuspid and mitral). The cushions also arch in the shape of a U so that the opening points forwards and to the left and the septum primum fuses with the middle of the two cushions. The ventricles are bisected by the thick muscular interventricular septum, the upper margin of which fuses with the arched endocardial cushions. Thus, the left border of the arch faces the left ventricle, the right border faces the right atrium, and the tricuspid lies at a lower level than the mitral valve. The endocardial cushions form the septal leaflet of the tricuspid valve, the atrioventricular septum, and the anterior leaflet of the mitral valve. The U-shaped bay of the endocardial cushion is important as it helps to form the conduit through the primary interventricular foramen, leading from the body of the left ventricle to the aorta.

In an endocardial cushion defect the normal U-shaped bay does not develop so that the septum primum is unable to fuse with the upper margin of the ventricular septum (Van Mierop et al., 1962). The interatrial defect consists mainly of the absent atrioventricular septum but it becomes interatrial because of the apical displacement of the attachment of the cusps of the mitral valve. If the defect is large, part of the lower margin of the normal interatrial septum may also be absent. The lower margin of the defect always has a concave scooped-out appearance where the endocardial cushions are deficient and the normal atrioventricular septum fails to appear (Frater, 1965). The medial third of the mitral valve is attached to the crest of the septum and not to the normal atrioventricular septum, so that it is displaced forwards and towards the apex of the heart. This is responsible for the abnormal position and plane of the valve. The valve itself is frequently cleft (partially or completely) with shortened abnormal chordae attached to the crest of the septum instead of the antero-medial papillary muscle. The cleft divides the valve into a normal superior half and an abnormally situated inferior half. The atrioventricular septum normally forms the postero-medial wall of the outflow tract of the
left ventricle, so that its absence, together with the abnormal origin of the mitral valve, disturbs the normal architecture of the outflow tract. The defects encroach on the posteromedial walls forming a characteristic deformed, narrow, and elongated outflow tract.

In the more severe abnormalities, the tricuspid valve may also be cleft and part or all of the ventricular septum may be absent.

Clinical Importance of the Abnormal Cineangiocardiogram. We have seen the abnormal configuration of the left ventricle only in patients with an endocardial cushion defect where the characteristic pathology produces this unique radiological profile. This picture does not occur in a simple ventricular septal defect, a combined ventricular and secundum atrial septal defect, or a secundum atrial septal defect with associated mitral incompetence. It is also useful to identify the occasional patient in whom a secundum atrial septal defect is associated with left axis deviation of the electrocardiogram.

The route to the left ventricle is also of some importance. The tip of the angiocardiographic catheter may be passed into the left ventricle via the septal defect. Care must then be taken to avoid catheter recoil during the injection of contrast...
Left Ventricular Cine-angiography in Endocardial Cushion Defect

SUMMARY

Selective left ventricular cine-angiography was performed in 13 patients with an endocardial cushion defect. The diagnosis was confirmed at operation in 10. All 13 had an ostium primum atrial septal defect and left mitral valve, 5 had a cleft tricuspid valve, 3 had a ventricular septal defect, and 2 had additional pulmonary stenosis.

The findings on auscultation and the electrocardiogram were useful in establishing the correct diagnosis. Cardiac catheterization and multiple indicator dilution curves provided valuable additional confirmatory information, but the left ventricular cineangiogram was the most helpful special investigation.

In the simple deformities (atrial septal defect with cleft mitral valve), the "swan-neck" deformity of the left ventricle, with an abnormal position, profile, architecture, and incompetence of the mitral valve, was demonstrated best in the antero-posterior position. The right anterior oblique position added little extra information but the left anterior oblique position was useful to demonstrate deficiency of the ventricular septum.

The radiological appearance was explained by the abnormal embryology and pathological anatomy.

We would like to thank our medical and surgical colleagues in the Cardiac Clinic and the Cardiothoracic Surgical Unit for their assistance and Dr. J. G. Burger, Superintendent of Groote Schuur Hospital, for permission to publish. Our thanks are also due to the Council for Scientific and Industrial Research and the city of Cape Town for their continued support.

REFERENCES
