Malfunction of Björk-Shiley valve prosthesis in tricuspid position

P. D. V. Bourdillon and G. P. Sharratt
From the Wessex Cardiac and Thoracic Centre, Western Hospital, Southampton

Eight months after triple valve replacement with Björk-Shiley tilting disc valves a patient developed symptoms and signs suggesting malfunction of the prosthesis in the tricuspid position. This was confirmed by echocardiography and angiocardiography, and at operation the disc of the prosthesis was found to be stuck half-open by fibrin and clot. A further 11 patients with the same type of prosthesis in the tricuspid position were then studied by phonocardiography and echocardiography. In one of these the prosthesis was found to be stuck and this was confirmed by angiocardiography and surgery. These 2 cases are reported in detail and the findings in the other 10 are discussed. The implications of this high incidence of malfunction of the Björk-Shiley prosthesis in the tricuspid position are considered. Echocardiography appears to be essential in the follow-up of such patients.

Obstruction of ball valve prostheses in the tricuspid position is well recognized (Samaan and Murali, 1970; Vander Veer et al., 1971; Bache et al., 1972; Suwansirikul et al., 1974; Assad-Morell et al., 1974). Assad-Morell et al. (1974) emphasized the value of phonocardiography and echocardiography in the diagnosis of this complication. Echocardiography has been used by a number of workers in the analysis of normal prosthetic valve function (Gimenez et al., 1965; Winters, Gimenez, and Soloff, 1967; Johnson, Paton, and Holmes, 1970; Johnson, Holmes, and Paton, 1973; Douglas and Williams, 1974), and there have been reports of its use in the diagnosis of malfunction of prosthetic valves (Pfeifer et al., 1972; Belenkie et al., 1973; Oliva et al., 1973; Miller, Gibson, and Stephens, 1973). We have, however, found no previous reports of malfunction of the Björk-Shiley tilting disc valve in the tricuspid position. The present study followed the discovery of a stuck prosthesis of this type in the tricuspid position in one patient (Case 1), and led to the discovery of another (Case 4).

Subjects and methods
After the diagnosis and successful treatment of Case 1 a further 11 patients with a Björk-Shiley disc valve prosthesis in the tricuspid position were studied. They were numbered (Table) in the order of their study. All patients were on anticoagulant therapy. Clinical examination and penetrated posteroanterior and lateral chest x-ray films were examined in every case. From these x-ray films the alignment of the disc of the prosthesis was determined and documented according to the direction of the small segment of the disc. Phonocardiograms and echocardiograms were recorded on a Cambridge strip-chart recorder. Echocardiography was performed using a Smith Klein Ekoline 20, and a 2:25 MHz transducer focused at 5 cm. The transducer was placed at the left sternal border in the fourth or fifth intercostal space and the patient was positioned so as to produce the clearest recording of the valve disc. The optimal position was usually supine or lying on the left side at an angle of about 45°. The excursion of the opening movement of the disc of the prosthesis in the tricuspid position was measured as shown in Fig. 1A.

Results
The details are shown in the Table. In Cases 1 and 4 no movement of the disc of the prosthesis was recorded, but in all the others opening and closure were shown.

Case 1
A 66-year-old man had severe triple valve disease
TABLE Details of patients with a Björk-Shiley valve prosthesis

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Age (y)</th>
<th>Sex</th>
<th>Valves replaced</th>
<th>Tricuspid size (mm)</th>
<th>Months from operation to study</th>
<th>Orientation of disc (small segment)</th>
<th>Disc excursion (cm)</th>
<th>No. of AV valve closing sounds</th>
<th>No. of AV valve opening sounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>66</td>
<td>M</td>
<td>M, T, A</td>
<td>31</td>
<td>8</td>
<td>Inferior</td>
<td>Nil</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>35</td>
<td>F</td>
<td>M, T, A</td>
<td>29</td>
<td>7</td>
<td>Posterior</td>
<td>1·3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>61</td>
<td>M</td>
<td>M, T, A</td>
<td>31</td>
<td>12</td>
<td>Inferior</td>
<td>1·3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>48</td>
<td>F</td>
<td>M, T, A</td>
<td>31</td>
<td>15</td>
<td>Superior</td>
<td>Nil</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>F</td>
<td>M, T, A</td>
<td>31</td>
<td>22</td>
<td>Superior</td>
<td>1·0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>49</td>
<td>F</td>
<td>M, T, A</td>
<td>31</td>
<td>12</td>
<td>Superior</td>
<td>1·6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>45</td>
<td>F</td>
<td>M, T</td>
<td>31</td>
<td>7</td>
<td>Superior</td>
<td>1·35</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>69</td>
<td>F</td>
<td>M, T</td>
<td>29</td>
<td>10</td>
<td>Superior</td>
<td>0·85</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>37</td>
<td>F</td>
<td>M, T, A</td>
<td>31</td>
<td>22</td>
<td>Superior</td>
<td>0·9</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>48</td>
<td>F</td>
<td>M, T, A</td>
<td>31</td>
<td>14</td>
<td>Posterior</td>
<td>1·0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>69</td>
<td>F</td>
<td>M, T, A</td>
<td>31</td>
<td>1</td>
<td>Superior</td>
<td>1·1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>52</td>
<td>F</td>
<td>M, T, A</td>
<td>31</td>
<td>24</td>
<td>Posterior</td>
<td>1·0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

M, mitral; T, tricuspid; A, aortic.

Note: All prosthetic valves were Björk-Shiley prostheses, except for Case 10 in whom the mitral and aortic prostheses were Starr-Edwards ball valve prostheses.

and a history of rheumatic fever. Cardiac catheterization had confirmed severe mitral stenosis and moderate mitral regurgitation, moderate aortic stenosis and mild aortic regurgitation, and moderate tricuspid regurgitation, with severe pulmonary hypertension. A triple valve replacement was performed using Björk-Shiley prostheses. He subsequently did well until eight months after the operation when he began to feel weak and tired, with ankle swelling and moderate exertional dyspnoea. He had required admission to another hospital for restabilization of his anticoagulants about a month earlier because he had had too high a dosage. Otherwise his anticoagulation had been satisfactory. On examination he had mild ankle oedema and 3 cm hepatomegaly, and the jugular
venous pressure was raised to about 10 cm above
the sternal angle. He was in controlled atrial
fibrillation. On auscultation there was a grade 3/4
delayed diastolic murmur, heard maximally at
the lower left sternal edge, and increasing in intensity
with inspiration. There was also a soft pansystolic
murmur at the left sternal edge and a soft aortic
systolic murmur. The prosthetic valve sounds were
considered clinically to be normal. The diagnosis
was thought to be malfunction of the tricuspid
valve prosthesis, with resulting stenosis and regur-

gitation.

Phonocardiography confirmed the clinical de-
scription of the murmurs and showed only single
atrioventricular (AV) valve opening and closing
sounds. Echocardiography of the tricuspid valve
prosthesis showed two parallel lines with no evi-
dence of an opening movement (Fig. 1B). The mitral
and aortic valve prostheses were considered to be
functioning normally. Right and left heart cathe-
terization was performed. There was a high right
atrial pressure with a mean of 14 mmHg and a v
wave of 22 mmHg. An end-diastolic tricuspid
gradient of 12 mmHg was recorded on withdrawal
across the prosthesis. Angiocardiography with
right atrial injection showed that the disc of the
prosthesis was immobile in the half-open position.
Mitral and aortic prosthetic valve function was
normal. The diagnosis of thrombotic obstruction
of the tricuspid valve prosthesis was made. At
operation there was a fibrinous covering of the
disc of the valve struts causing the disc to be held in the half-
open position and to be completely immobile
(Fig. 2). The valve was excised and a Starr-
Edwards ball valve prosthesis was inserted. The
patient has remained well since the operation and
is now on dipyridamole as well as warfarin.

Case 4

A 48-year-old woman had triple valve disease
which was thought to be rheumatic in origin and
had been complicated by infective endocarditis
five years previously. Cardiac catheterization
confirmed the presence of severe mitral regurgita-
tion and stenosis, moderate aortic regurgitation
with mild stenosis, and moderate tricuspid regurgi-
tation and stenosis. A triple valve replacement
was performed using Björk-Shiley valve prostheses.
Subsequently she did well and was asymptomatic
until one year after the operation when at a routine
follow-up assessment she complained of a "bloated"
feeling and of having gained 12 kg in weight. Her
exercise tolerance was however unchanged. The
jugular venous pressure was noted to be moderately
raised but the prosthetic valves were thought to be
working normally. Four months later she was seen
as part of the present study, initiated after the
discovery of Case 1. She had by now developed
ankle swelling in addition to her previous symptoms
but exercise tolerance was still normal.

Clinical examination revealed a high jugular
venous pressure with a v wave 12 cm above the
sternal angle. There was bilateral ankle oedema
and 4 cm hepatomegaly. On auscultation there was a
grade 1 delayed diastolic murmur at the lower left
stenal edge, increased in intensity by inspiration.
The prosthetic valve sounds were considered to be
clinically unremarkable and an aortic ejection
murmur was present. The murmurs were confirmed
by phonocardiography but no tricuspid valve sounds
could be identified, there being only single AV
valve opening and closing sounds. Echocardiogra-
phy of the tricuspid valve prosthesis showed two
parallel lines with no opening movement (Fig. 1C),
an appearance very similar to that found in Case 1
(Fig. 1B). This was thought to indicate that the
disc of the prosthesis was stuck. Right atrial angio-
cardiography showed a filling defect on the ventri-
cular aspect of the prosthesis. The disc could be
identified and was seen to be stuck in the half-open
position. Fluoroscopy, with the valve in profile,
confirmed that the disc could be visualized and
that it was stuck half-open and virtually immobile.
At operation the valve was found to be obstructed
by clot of varying ages and fibrin, with the disc stuck half-open. It was replaced by a Hancock mounted xenograft valve. The patient made a good recovery and is now asymptomatic, two months after the second operation.

Other cases

All the other 10 patients studied (Cases 2, 3, and 5 to 12) were either asymptomatic or had minimal effort dyspnoea apart from Case 6 who had mild effort dyspnoea and Case 12 who had severe effort dyspnoea. The jugular venous pressure was mildly raised in Case 6, considerably raised in Case 12 and was normal in the other patients. Cases 6, 11, and 12 had soft delayed diastolic murmurs, and these were thought to arise from the tricuspid valve prostheses. However, in all cases the echocardiogram of the tricuspid valve prosthesis showed clear opening and closing movements (Fig. 1A).

The phonocardiogram was examined for two sounds of AV valve opening and two sounds of AV valve closure. Five patients had two AV valve opening sounds and 9 had two AV valve closing sounds (Table). None of these 10 patients had both a single AV valve opening sound and a single AV valve closing sound. It was concluded that the disc of the tricuspid valve prosthesis was not stuck in any of these 10 patients. The maximum disc excursion of the tricuspid valve prostheses which were not stuck varied from 1.6 cm to 0.85 cm (mean 1.1 cm). The excursion did not seem to be related to the orientation of the disc or to the size of the prosthesis.

Discussion

Twelve patients with a Björk-Shiley prosthesis in the tricuspid position are presented. In 2 of them the disc of the prosthesis was stuck in the half-open position. Both of these patients had a pronounced rise in the jugular venous pressure and a delayed diastolic murmur, though in one of them (Case 4) the murmur was soft and could easily have been overlooked if attention was not paid specifically to this point. These physical signs, therefore, suggest the diagnosis of a stuck tricuspid valve prosthesis but they may be found when the disc of the prosthesis is shown to be mobile on the echocardiogram, as in Cases 6, 11, and 12. It is not possible to say from this study whether or not there were minor degrees of tricuspid prosthetic valve malfunction in these patients.

The phonocardiogram was found to be of limited use in making the diagnosis of a stuck tricuspid valve prosthesis. These patients all had mitral as well as tricuspid prostheses and all but two had aortic prostheses as well. This makes analysis of heart sounds very difficult even with the aid of simultaneous echocardiography. Some patients with both functioning mitral and tricuspid valve prostheses had single AV valve opening or closing sounds. Only the two patients with stuck tricuspid prosthetic valves, however, had both a single opening sound and a single closing sound.

Although angiocardiography was performed to confirm the diagnosis in the two cases with stuck prostheses reported here, the appearance on the echocardiogram of two parallel lines with no disc movement appears to be diagnostic. We believe that the two lines arise from the valve ring and the stationary disc. In a prosthesis that is opening the disc is seen to move anteriorly in diastole. The cause of an apparent double disc echo in some cases (Fig. 1A) is uncertain. Douglas and Williams (1974) emphasized the importance of the alignment of the disc and transducer in the echocardiographic assessment of Björk-Shiley prosthetic valves but this does not seem to be important in the detection of an immobilized disc in a prosthesis of this type in the tricuspid position.

Fluoroscopy showed the stuck disc in Case 4. In a normally functioning Björk-Shiley prosthesis the disc is not visible on fluoroscopy but it appears that when it is stationary and can be viewed in profile the disc can be visualized. Recently a radiopaque ring has been incorporated in the discs of Björk-Shiley prostheses and the diagnosis of a stuck prosthesis of this modern type should be obvious on simple fluoroscopy. It seems reasonable to suggest that only this type of Björk-Shiley prosthesis should, in future, be used.

The incidence of malfunction of 2 out of 12 cases in our study may be an underestimate of the overall incidence as a further 5 patients who have had this type of prosthesis in the tricuspid position in this centre could not be included in this study. Three of these patients are overseas and 2 have died. Necropsy information on the state of the tricuspid valve prosthesis in these 2 patients is unfortunately not available.

It is of interest that in Case 4 there was thrombus of different ages on the valve at the time of operation and that some was recent. It appears from this observation that the lesion is progressive once it has started. It may be inferred that if anticoagulation is allowed to become inadequate even for a short time the process may start by which eventually prosthetic valve function may be destroyed by immobilization of the disc.

In reporting a case of late thrombosis of a ball valve prosthesis in the tricuspid position, Suwan-
sirikul et al. (1974) thought that this was the result of entrapment of the cage of the valve in the wall of the right ventricle. This mechanism cannot be implicated with the low profile Björk-Shiley valve prosthesis. Other factors must, therefore, be of importance in the apparent predisposition of tricuspid valve prostheses to thrombotic obstruction, such as the dynamics of flow in the right side of the heart as compared with the left.

Conclusion

The Björk-Shiley valve prosthesis is not the ideal valve for the tricuspid position. In cases with this type of prosthesis in the tricuspid position regular follow-up should be undertaken, paying particular attention to the jugular venous pressure and the presence of a diastolic murmur. Echocardiography should be performed frequently and it may be that serial studies would enable lesser degrees of tricuspid valve prothetic malfunction to be detected before complete sticking of the disc. We suggest that in future if Björk-Shiley prostheses are used, only those with a radio-opaque ring incorporated in the disc should be employed.

We would like to thank Dr. A. M. Johnson, Dr. N. Conway, Mr. J. K. Ross, and Mr. J. L. Monro for allowing us to study their patients. We would also like to thank Dr. A. M. Johnson for his helpful advice in the preparation of this paper.

References

Requests for reprints to Dr. P. D. V. Bourdillon, Western Hospital, Oakley Road, Southampton SO9 4WQ.