Prinzmetal's angina: reflex cardiovascular response during episode of pain

F. PEREZ-GOMEZ, R. MARTIN DE DIOS, J. REY, AND A. GARCIA AGUADO
From the Departamento Cardiopulmonar, Hospital Clinico de la Facultad de Medicina, Madrid, Spain

SUMMARY Previous angiographic studies have shown that coronary spasm occurs in association with the variant angina described by Prinzmetal, confirming his original hypothesis. In this work we recorded the heart rate changes and the incidence of arrhythmias during variant angina. The patients were divided into two groups: anterior, with electrocardiographic signs of anterior ischaemia, and inferior, with changes in the inferior leads. There was a significant increase of heart rate during pain in anterior myocardial ischaemia and a significant decrease when the ischaemia was inferior. The incidence of ectopic arrhythmias during pain was significantly greater in patients with anterior ischaemia, but there was a high incidence of atrioventricular block in patients with inferior ischaemia. We suggest that these findings can be explained by different responses of the autonomic nervous system to anterior and inferior acute myocardial ischaemia.

The angina described by Prinzmetal et al. in 1960 is a clinical entity which can be differentiated from classic angina pectoris: (a) Clinically: classic angina is regularly preceded by an increase in cardiac work, resulting from an increase in heart rate, peripheral resistances, or ventricular pre-ejection time (Roughgarden, 1966; Robinson, 1967). On the other hand, Prinzmetal angina can appear at rest and is not preceded by changes in these variables (Guazzi et al., 1971b). (b) Electrocardiographically: the electrocardiogram during classic angina pectoris is characterised by depression of the ST segment and/or T wave inversion. Prinzmetal angina is accompanied by transient ST segment elevation which returns to normal once the pain has passed off. (c) Coronary arteriography: various investigators, the first of whom were Dhurandhar et al. (1972) and Oliva et al. (1973), have confirmed Prinzmetal's theory that coronary spasm occurred during the episode of variant angina but not during classic angina. This observation shows the similarity between the patients with Prinzmetal's angina and experimental animals subjected to transient coronary ligation. This group of patients are, therefore, ideal for the study of the circulatory changes produced by acute myocardial ischaemia.

In previous studies during coronary arteriography (Perez-Gomez and Garcia-Aguado, 1977), we found a dominant response of the parasympathetic receptors situated in the inferior wall of the left ventricle. In this investigation we have studied changes in heart rate and rhythm during episodes of pain in patients with Prinzmetal's angina.

Subjects and methods

We made observations on 14 patients with the clinical diagnosis of Prinzmetal's angina who were divided into 2 groups. Group A consisted of 7 patients with the typical electrocardiographic changes of Prinzmetal's angina in the anterior precordial leads, and group I consisted of 7 patients with these changes in left ventricular inferior wall leads. Coronary arteriography was performed on 12 patients and left ventriculography on 10. The changes in heart rate produced by the pain were recorded in 12 patients.

In order to obtain a large number of patients for statistical purposes, we have reviewed the electrocardiographic tracings in 63 published cases where both the basal electrocardiogram and the electrocardiogram during pain were shown. These cases are those described by Prinzmetal et al. (1960), cases 1 and 2; Robinson (1965); Botti (1966); Schwartz et al. (1966), case 1; Hilal and Massumi (1967); Dorra et al. (1968); Jouve et al. (1969), cases 2, 4, 6, 7, and 8; Poggi et al. (1969), 2 cases; Whiting et al. (1970); Bayes de Luna et al. (1971), 2 cases; Casamayor del Cacho et al. (1971); Guazzi et al. (1971a), cases 1, 3, 4, and 5; Silverman and Flamm

Received for publication 27 December 1978
(1971), case 1; Cosby et al. (1972), cases 1 and 3; Cheng et al. (1973), cases 1, 2, 3, and 4; Cherrier et al. (1973), case 7; Ferrer Montagut et al. (1973), case 2; MacAlpin et al. (1973), cases R.C., C.G., and M.K.; MacMillan et al. (1973), case R.W.; Oliva et al. (1973); Bodenheimer et al. (1974), cases 2, 6, and 7; Gaasch et al. (1974), case 3; Kossowsky et al. (1974), case 4; Levin et al. (1974), 3 cases; Schroeder et al. (1974); Vázquez Garcia et al. (1974), case 6; Yasue et al. (1974), cases M.S., S.S., and H.K.; Donsky et al. (1975); Endo et al. (1975), cases 2 and 9; Gaasch et al. (1975), cases 1 and 2; Smithen et al. (1975); Widlansky et al. (1975); Marsh et al. (1976); Daniel Riesco et al. (1976), cases 1 and 2; and Yasue et al. (1976), cases 1, 2, 3, and 4. With our 12 cases, there is a total of 75 published cases, of which 38 belong to group A, and 37 to group I. We have excluded those patients who presented with myocardial infarction or severe coronary artery disease in an area other than that which gave rise to the electrocardiographic abnormalities. We also excluded those patients in whom electrocardiograms showed atrioventricular block and those in whom sinus rhythm and ventricular arrhythmias alternated, unless sufficient of the record showed normal sinus rhythm. We compared the basal rate with the rate during pain, measuring average heart rate from all the tracings shown in the publication.

We studied the incidence of arrhythmias during pain in 210 cases, including our 14 cases, cases reported by the authors listed above, and cases reported by Meriel et al. (1966), Bouvrain et al. (1969), Gillian et al. (1969), Hardel et al. (1969), Yeh and Rogers (1970), Gaquiré and Quillet (1971), Guazzi et al. (1971b), Cheng et al. (1972), Dhurandhar et al. (1972), Kemp (1972), Fernandez et al. (1973), Gonin et al. (1973), Hiltgen et al. (1973), King et al. (1973), Levi and Proto (1973), Applefield and Ronan (1974), Auzépy et al. (1974), Betriu et al. (1974), Hart et al. (1974), Kerin and Macleod (1974), Kerin and Schwartz (1974), Nevin (1974), Prchkov et al. (1974), Harper et al. (1975), Marti Garcia et al. (1975), Meller et al. (1975), and Shubrooks et al. (1975). Cases were included only if the area of ischaemia and the occurrence or absence of arrhythmias was specifically stated.

Applying the same criteria we divided the cases into two groups: group A (anterior) with 104 cases, group I (inferior) with 101 cases, and group I + L (inferior and lateral) with 5 cases. The incidence of ectopic arrhythmias and of second or third degree atrioventricular block was analysed. In each case we only considered the most severe arrhythmia (classifying severity in the following order: ventricular fibrillation, ventricular tachycardia, ventricular ectopic beats, atrial fibrillation, atrial tachycardia, and atrial ectopic beats). However, we have taken into account the association of atrioventricular block and severe ventricular arrhythmias (ventricular fibrillation or tachycardia).

Results

LEFT VENTRICULAR HAEMODYNAMICS (Table 1)

Basal left ventricular end-diastolic pressure was normal in all cases, ranging from 5 to 12 mmHg. The ejection fraction was greater than 0-5 in all cases, except for one in which it was 0-41.

CORONARY ARTERIOGRAPHY (Table 1)

Obstruction greater than 50 per cent was found in 9 patients, involving 1 artery in 7, and 2 arteries in the remaining 2. The coronary arteries were normal in 2 patients and were slightly abnormal in another.

Table 1 Clinical, haemodynamic, and angiographic data

<table>
<thead>
<tr>
<th>Case no.</th>
<th>Age</th>
<th>Sex</th>
<th>Sinus rate</th>
<th>Area of ST †</th>
<th>Arrhythmias</th>
<th>LVEDP Ejection fraction</th>
<th>Coronary arteriography</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Basal</td>
<td>Pain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>44</td>
<td>M</td>
<td>115</td>
<td>95</td>
<td>I</td>
<td>—</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>45</td>
<td>M</td>
<td>85</td>
<td>57</td>
<td>I</td>
<td>—</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>51</td>
<td>M</td>
<td>95</td>
<td>62</td>
<td>I</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>46</td>
<td>M</td>
<td>60</td>
<td>130</td>
<td>A</td>
<td>VE</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>M</td>
<td>72</td>
<td>90</td>
<td>A</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>65</td>
<td>M</td>
<td>78</td>
<td>100</td>
<td>A</td>
<td>AF</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>41</td>
<td>F</td>
<td>65</td>
<td>85</td>
<td>A</td>
<td>VE</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>56</td>
<td>M</td>
<td>60</td>
<td>45</td>
<td>I</td>
<td>AV block</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>51</td>
<td>M</td>
<td>60</td>
<td>45</td>
<td>I</td>
<td>AV block</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>44</td>
<td>M</td>
<td>68</td>
<td>98</td>
<td>A</td>
<td>—</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>44</td>
<td>M</td>
<td>75</td>
<td>63</td>
<td>I</td>
<td>—</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>51</td>
<td>M</td>
<td>60</td>
<td>—</td>
<td>I</td>
<td>—</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>58</td>
<td>M</td>
<td>62</td>
<td>75</td>
<td>A</td>
<td>—</td>
<td>12</td>
</tr>
<tr>
<td>14</td>
<td>68</td>
<td>M</td>
<td>115</td>
<td>95</td>
<td>I</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

I. inferior ischaemia; A, anterior ischaemia; VE, ventricular ectopics; AF, atrial fibrillation; LVEDP, left ventricular end-diastolic pressure; AD, anterior descending; Cx, circumflex; RC, right coronary.

Data of coronary arteriography expressed in percentage of obstruction. (x), obstruction caused by spasm.
Distal arteries were normal in all cases. Arteriography showed coronary spasm in 4 cases (Fig. 1 and 2), appearing spontaneously in 3 and after adrenaline injection in the other. In 1 patient the spasm affected the entire length of the anterior descending artery, the contrast medium taking several seconds to reach the peripheral branches. In all cases the spasm passed off after the administration of sublingual glyceryl trinitrate.

Changes in Heart Rate During Episode of Pain

Group A
Mean sinus rate increased with pain from a basal rate of 67·5 beats per minute to 94·6, a change which was statistically significant (Fig. 3). In all published cases, the mean basal rate was 69·3 increasing during pain to 86·3, a highly significant change (Fig. 4).

Group B
The mean basal rate in our cases was 90·9 beats per minute which decreased during pain to 69·5, a change which was not statistically significant (Fig. 3). In all published cases, the mean basal rate was 76·5
ARRHYTHMIAS DURING EPISODE OF PAIN

Group A

One of our patients developed atrial fibrillation and 2 ventricular ectopic beats. Of the 104 published cases (Table 2), 30 developed severe ventricular arrhythmias (tachycardia or fibrillation) during pain, 22 had ventricular ectopic beats, and 5 had atrial arrhythmias. Three cases (Table 3) had atrioventricular block, which in 2 was accompanied by a severe ventricular arrhythmia. One of these cases had had previous inferior myocardial infarction, one other had severe right coronary artery disease, and the other slight narrowing of the anterior descending coronary artery.

Group I

One of our cases developed atrioventricular block but none developed ectopic arrhythmias. Of the 101 published cases, however, 4 had severe ventricular arrhythmias, and 6 ventricular ectopic beats. Severe ventricular arrhythmias associated with atrioventricular block were reported in 8 cases (Table 3) and isolated atrioventricular block in 17. Statistical analysis showed that ectopic arrhythmias occurred more commonly in group A than in group I. Both when these arrhythmias were seen in isolation ($P < 0.001$), and when those associated with atrioventricular block were included ($P < 0.005$).

Discussion

Coronary arteriography during the episode of Prinzmetal's angina, first performed by Dhurandhar et al. (1972) and Oliva et al. (1973), and subsequently by others, has confirmed the occurrence of the transient coronary spasm which was postulated by Prinzmetal et al. (1960) as the cause of this syndrome. Recent studies have shown that coronary spasm accompanied by the classical symptoms can be reproduced by the injection of methacholine (Yasue et al., 1974; ergometrine (Gaasch et al., 1975), or adrenaline in the presence of beta-adrenergic blockade (Yasue et al., 1976). For this reason, the patient with Prinzmetal's angina is an ideal subject for the study of the circulatory and central nervous system responses to transient acute myocardial ischaemia. During the episode of pain the characteristic haemodynamic change is a conspicuous rise in left ventricular end-diastolic pressure reflecting left ventricular dysfunction. In the cases published by Guazzi et al. (1971b), Cheng et al. (1973), Kerin and Macleod (1974), Levin et al. (1974), Gaasch et al. (1975), and Smithen et al. (1975), there was no difference in haemodynamic behaviour between patients with anterior and those with inferior ischaemia. We believe, therefore, that the dependence of heart rate response on the site of coronary spasm

Table 2 Arrhythmias during pain

<table>
<thead>
<tr>
<th></th>
<th>Ventricular tachycardia</th>
<th>Ventricular fibrillation</th>
<th>Ventricular ectopic beats</th>
<th>Atrial fibrillation</th>
<th>Atrial ectopic beats</th>
<th>Supraventricular tachycardia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior</td>
<td>16</td>
<td>14</td>
<td>22</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Inferior</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Inferior + lateral</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Prinzmetal's angina

Table 3: Atrioventricular block during pain

<table>
<thead>
<tr>
<th>Isolated AV block</th>
<th>Atrioventricular block</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ Ventricular tachycardia</td>
</tr>
<tr>
<td>Anterior</td>
<td>1</td>
</tr>
<tr>
<td>Inferior</td>
<td>17</td>
</tr>
<tr>
<td>Inferior + lateral</td>
<td>-</td>
</tr>
</tbody>
</table>

implies a difference in the response of the autonomic nervous system to anterior and inferior ischaemia, with a predominant sympathetic response to anterior ischaemia, and a predominant parasympathetic response to inferior ischaemia. This difference has not been recognised in the past because there have been few published cases and because they have not been divided into those with anterior and those with inferior ischaemia.

The appearance of ectopic arrhythmias is facilitated by a slow heart rate, because of the longer non-refractory diastolic period. Whiting et al. (1970) have shown that severe ventricular arrhythmias accompanying atrioventricular block ceased after the implantation of a demand pacemaker, even when episodes of pain continued. However, we have found that the incidence of ectopic arrhythmias is greater in the patients with a faster sinus rate (that is, those with anterior ischaemia). This may result from sympathetic stimulation, as suggested by Daggett and Wallace (1966), increased myocardial oxygen consumption resulting from tachycardia, or the greater extent of myocardial damage which follows the obstruction of the anterior descending artery. Nevertheless, this greater damage can be partly caused by increased heart work because of tachycardia and a high degree of catecholamine release.

There are cases which cannot be included in either of the two principal groups, in whom ST elevation occurs during pain in I, aVL, V5 to V6, and inferior leads; Wiener et al. (1976) have shown simultaneous spasm of the three main coronary arteries in one of these cases.

Dr P. Zarco performed most of the angiographic studies. Drs C. Benito and J. Dominguez sent us patients for investigation, and Drs W. Bridgen and A. Bayes de Luna gave us their help and criticism. We also thank Mr R. Carrera for his help.

References

Requests for reprints to Dr F. Perez-Gomez, Departamento Cardiopulmonar, Hospital Clinico de la Facultad de Medicina, Madrid, Spain.