‘Dual atrioventricular nodal pathways’ in patients with Wolff-Parkinson-White syndrome*

EDWARD L C PRITCHETT, ERIC N PRYSTOWSKY, DAVID G BENDITT, JOHN J GALLAGHER
From the Division of Cardiology, Duke University Medical Center, Durham, North Carolina, USA

SUMMARY ‘Dual atrioventricular nodal pathways’ were found in five patients who also had the Wolff-Parkinson-White syndrome. All five patients had a re-entrant tachycardia that used the atrioventricular node for conduction in the anterograde direction and an accessory atrioventricular pathway for conduction in the retrograde direction. One of the patients also had a re-entrant tachycardia that originated within the atrium or the atrioventricular node. Dual atrioventricular nodal pathways were identified in three of the five patients during their first electrophysiological study because the effective refractory period of the accessory atrioventricular pathway in the anterograde direction was longer than the effective refractory period of the fast atrioventricular nodal pathway. In the other two patients the dual atrioventricular nodal pathways were found only after operative division of an accessory atrioventricular pathway.

Re-entrant tachycardia that uses an accessory pathway may be cured by operative division of the accessory pathway. Tachycardia resulting from re-entry within the atrioventricular node cannot be cured by an operation unless the normal conduction system is divided and a permanent pacemaker implanted. These five patients indicate the importance of determining the aetiology of tachycardia by studying the tachycardia itself and not only the type of atrioventricular conduction present.

Tachycardia that begins and ends suddenly, and during which the QRS morphology on the electrocardiogram is normal is commonly called paroxysmal supraventricular tachycardia.1-4 In patients with the Wolff-Parkinson-White syndrome, paroxysmal supraventricular tachycardia is a re-entrant arrhythmia which uses the atrioventricular node for conduction in the anterograde direction and an accessory pathway for conduction in the retrograde direction.4-6 Paroxysmal supraventricular tachycardia may also be the result of re-entry within the atrioventricular node.7-9 In this latter case dual atrioventricular nodal pathways are usually shown by testing with the extrastimulus technique in the atrium. In this report we describe five patients with the Wolff-Parkinson-White syndrome who also had dual atrioventricular nodal pathways. This study shows the importance of basing criteria for diagnosing tachycardias on the behaviour of the tachycardia rather than on the type of atrioventricular conduction that is present.

Patients and methods

The patients were among those referred to the Duke University Medical Center for treatment of Wolff-Parkinson-White syndrome and paroxysmal arrhythmias between July 1974 and March 1978. All five patients had a delta wave on the QRS complex of electrocardiograms recorded during sinus rhythm. All five patients also had spontaneous occurrence of a regular tachycardia during which the QRS complex on the electrocardiogram was normal. Patients were identified by reviewing pre-admission records and results of electrophysiological studies performed while they were in hospital. When available, electrophysiological studies performed after surgical correction of ventricular pre-excitation were also reviewed. Illustrations from records of cases 4 and 5 have been previously published 5, 10.

All patients gave informed consent before investigation. Complete medical history, physical examina-

* Supported in part by grants from the General Clinical Research Centers Branch, Division of Health Resources, and from the National Institutes of Health, Bethesda, Maryland. This work was done during the tenure of Dr Benditt as a Fellow of the Medical Research Council of Canada. Dr Pritchett is the recipient of a NHLBI Young Investigator Research Award. This work was done during Dr Gallagher’s tenure as an established investigator of the American Heart Association.

Received for publication 13th September 1979
tion, chest X-ray films, and electrocardiograms were obtained on admission. Antiarrhythmic treatment was discontinued at least 48 hours before study.

Laboratory techniques used in these studies have been reported previously.\(^5\)\(^1\)\(^2\)\(^3\) Electrode catheters were positioned to record simultaneously from the right atrium, coronary sinus, bundle of His, and right ventricle. Heparin (100 units/kg) was given intravenously after catheters were positioned. Atrioventricular conduction in the anterograde and retrograde directions was studied with fixed-rate pacing and the extrastimulus technique. When using the extrastimulus technique, every eighth driven stimulus was followed by a premature stimulus at progressively shorter coupling intervals until the refractory period of the chamber was reached. Re-entrant tachycardias which occurred spontaneously during study or which were induced by programmed stimulation were studied with endocardial mapping and programmed premature beats. Endocardial mapping was performed by recording from the right atrium and atrial septum with a specially constructed bipolar electrode catheter\(^1\)\(^3\) and by recording from the left atrium with a quadripolar catheter in the coronary sinus. Endocardial mapping was used to locate the site of earliest atrial activation during re-entrant tachycardia. Premature ventricular stimuli were coupled to every eighth beat of the tachycardia by programmed stimulation and induced throughout the cardiac cycle.\(^1\)\(^4\) These premature stimuli were used to show atrial pre-excitation (early retrograde atrial activation).

Standard surface electrocardiogram leads and intracardiac electrograms were recorded on magnetic tape at 3\(\frac{3}{4}\) in/s and written on paper at 200 or 250 mm/s by a Siemens Mingograf ink-jet recorder. Refractory periods were measured with an interactive computer programme.\(^1\)\(^5\) Using this programme independent observers have made measurements that were reproducible within 2 ms.

**Definitions**

- \(S_1, A_1, H_1,\) and \(V_1\) respectively refer to the stimulus, atrial electrogram, His bundle electrogram, and ventricular electrogram of the basic drive complex.
- \(A_2, H_2,\) and \(V_2\) refer to the atrial electrogram, His bundle electrogram, and ventricular electrogram caused by the extrastimulus \(S_2, A_{E1},\) and \(H_{E1}\) refer to the atrial electrogram of the first atrial echo beat and the His bundle electrogram that it initiates. All echoes specifically referred to in this paper were initiated by conduction in the retrograde direction over an accessory atrioventricular pathway.

**Accessory atrioventricular pathway:** An accessory atrioventricular muscle bundle.\(^1\)\(^6\)

**Re-entrant tachycardia which used the atrioventricular node for conduction in the anterograde direction and an accessory atrioventricular pathway for conduction in the retrograde direction:** A tachycardia which satisfied at least one of the following criteria:

1. The direction of atrial activation (determined using the technique of endocardial mapping) was retrograde and eccentric,\(^1\)\(^3\) that is atrial activation appeared not to begin at the atrioventricular node.
2. Bundle-branch block in the ventricle with the accessory atrioventricular pathway lengthened the ventriculoatrial conduction time by 25 ms or more.\(^1\)\(^7\)
3. Premature ventricular beats pre-excited the atrium during tachycardia at a time when the His bundle was refractory\(^1\)\(^4\) and the sequence of atrial activation of the pre-excited P wave was identical to the sequence recorded during tachycardia.

**Dual atrioventricular nodal pathways:** A type of atrioventricular nodal function characterised by a discontinuous curve of \(H_1-H_2\) intervals generated by the extrastimulus coupling intervals \((A_1-A_2).\)\(^1\)\(^8\) This definition is based on the characteristics of atrioventricular nodal refractoriness, which is indirect evidence. No anatomical evidence of distinct, specialised conduction pathways has been reported.

Published definitions have been used to define the effective and functional refractory periods of the accessory atrioventricular pathway\(^1\)\(^9\) the atrium,\(^1\)\(^0\) the fast atrioventricular nodal pathway\(^1\)\(^8\), and the slow atrioventricular nodal pathway.\(^1\)\(^8\)

**Results**

All five patients had a re-entrant tachycardia that used the atrioventricular node for conduction in the anterograde direction and an accessory atrioventricular pathway for conduction in the retrograde direction. In cases 1 and 2 (Table) continuous block of conduction in the anterograde direction over the accessory pathway was present with the pacing cycle length used to measure refractory periods. All basic driven and premature complexes at all coupling intervals were conducted with normal QRS appearances. In case 1 tachycardia was initiated by premature atrial stimuli that were conducted over either the fast or slow atrioventricular nodal pathway (Fig. 1). In case 2 tachycardia was initiated only by premature impulses that were conducted over the slow atrioventricular nodal pathway (Fig. 2). For example, premature stimuli with a coupling interval of 320 ms were repeated four times, and \(H_1-H_4\) intervals of 409, 352, 343,
Table  Electrophysiological data

<table>
<thead>
<tr>
<th>Case no.</th>
<th>Pacing site</th>
<th>Cycle length</th>
<th>AP ERP</th>
<th>Atrium</th>
<th>Atrioventricular node</th>
<th>Upper limit echo zone</th>
<th>AP location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ERP</td>
<td>FRP</td>
<td>ERP</td>
<td>FRP</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>RA</td>
<td>600</td>
<td>+</td>
<td>185</td>
<td>250</td>
<td>315</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>CS</td>
<td>600</td>
<td>*</td>
<td>215</td>
<td>255</td>
<td>310</td>
<td>360</td>
</tr>
<tr>
<td>2</td>
<td>RA</td>
<td>400</td>
<td>*</td>
<td>205</td>
<td>268</td>
<td>307</td>
<td>358 &lt; 281</td>
</tr>
<tr>
<td></td>
<td>CS</td>
<td>400</td>
<td></td>
<td>210</td>
<td>259</td>
<td>312</td>
<td>343 279</td>
</tr>
<tr>
<td>3</td>
<td>RA</td>
<td>800</td>
<td>429</td>
<td>235</td>
<td>302</td>
<td>391</td>
<td>471</td>
</tr>
<tr>
<td></td>
<td>CS</td>
<td>800</td>
<td>424</td>
<td>236</td>
<td>254</td>
<td>337</td>
<td>423 313</td>
</tr>
<tr>
<td>4</td>
<td>RA</td>
<td>400</td>
<td></td>
<td>210</td>
<td>245 &lt; 245</td>
<td>240</td>
<td>275 &lt; 205</td>
</tr>
<tr>
<td></td>
<td>RA</td>
<td>300</td>
<td></td>
<td>160</td>
<td>205</td>
<td>240</td>
<td>275 &lt; 205</td>
</tr>
<tr>
<td></td>
<td>CS</td>
<td>400</td>
<td></td>
<td>172</td>
<td>225</td>
<td>240</td>
<td>285 &lt; 225</td>
</tr>
<tr>
<td></td>
<td>CS</td>
<td>300</td>
<td></td>
<td>170</td>
<td>210</td>
<td>240</td>
<td>270 &lt; 210</td>
</tr>
<tr>
<td>5</td>
<td>RA</td>
<td>500</td>
<td></td>
<td>220</td>
<td>250</td>
<td>310</td>
<td>345 &lt; 250</td>
</tr>
<tr>
<td></td>
<td>CS</td>
<td>500</td>
<td></td>
<td>255</td>
<td>290</td>
<td>337</td>
<td>423 313</td>
</tr>
</tbody>
</table>

AP, accessory pathway; CS, coronary sinus; ERP, effective refractory period; FRP, functional refractory period; NA, not achieved; RA, right atrium.

*Continuous block of conduction in anterograde direction at this cycle length.
†No accessory pathway present at postoperative study.

and 351 ms were recorded. Only the H₁-H₂ interval of 409 ms initiated an atrial echo. This echo was recorded first in the lateral coronary sinus, confirming that it was initiated by conduction in the retrograde direction over the accessory pathway. All echoes were initiated by conduction in the retrograde direction over the accessory atrioventricular pathway, and the site of earliest atrial activation was always the lateral coronary sinus.

The tachycardia in cases 1 and 3 used only the slow atrioventricular nodal pathway for conduction in the anterograde direction. During tachycardia there was continuous block in the anterograde direction of the fast atrioventricular nodal pathway. Fig. 3 shows initiation of tachycardia in case 3. The AH interval recorded during the tachycardia varied between 250 ms and 330 ms. The RR intervals were similarly variable and the average interval was 491 ms (average heart rate = 122 beats/min).

In cases 4 and 5 the diagnosis of dual atrioventricular nodal pathways was made during an electrophysiological study...
Fig. 2  Case 2. (A) Refractory period measurement using stimulation of the right atrium at cycle length 400 ms. At this cycle length there was continuous block of the accessory atrioventricular pathway in the anterograde direction. All driven impulses and all premature stimuli were conducted to the ventricle with normal QRS morphology. $H_1-H_2$ intervals could be measured at every coupling interval. There is a discontinuity in the graph. Atrial echoes were generated only by premature stimuli that were conducted over the slow atrioventricular nodal pathway. Atrial refractoriness prevented the effective refractory period of the slow atrioventricular nodal pathway being determined exactly. (B) Refractory period measured using stimulation of the coronary sinus at cycle length 400 ms. There is again discontinuity in the graph. Only premature stimuli that were conducted over the slow atrioventricular nodal pathway initiated echoes. All atrial echoes were initiated in the lateral coronary sinus.

physiology study performed several days after operative division of an accessory atrioventricular pathway. Data in the Table from cases 4 and 5 were recorded during the postoperative study. In the preoperative study of case 5 the effective refractory period of the accessory atrioventricular pathway in the anterograde direction was measured at the same cycle length used to measure refractory periods of the atrioventricular node in the postoperative study. During stimulation of the right atrium, the effective refractory period of the accessory pathway in the anterograde direction was 260 ms. During stimulation of the coronary sinus, the effective refractory period of the accessory pathway in the anterograde direction was 280 ms. Since these values were less than the effective refractory period of the fast atrioventricular nodal pathway measured using stimulation from corresponding sites, only slow atrioventricular nodal conduction times could be recorded in the preoperative study from either stimulation site.

Case 5 had two re-entrant tachycardias. One used
the accessory atrioventricular pathway for conduc-
tion in the anterograde direction and one used the
accessory atrioventricular pathway for conduction
in the retrograde direction. This patient was
advised that operative division of her accessory
atrioventricular pathway would prevent only the
re-entrant tachycardia which used the accessory
atrioventricular pathway for conduction in the
retrograde direction and that the other tachycardia
might persist. She requested operation despite this
reservation. At the time of the operation both
tachycardias were observed. One tachycardia, as
expected, used the atrioventricular node for con-
duction in the anterograde direction and an acces-
sory atrioventricular pathway for conduction in the
anterograde direction. The other tachycardia
used both the atrioventricular node and the accessory
atrioventricular pathway for conduction in the
anterograde direction. Endocardial mapping of the
right atrium was performed, and the origin of this
latter tachycardia was found to be the anterior
atrial septum. The accessory atrioventricular path-
way was located in the right atrioventricular groove
and was successfully divided. Dual atrioventricular
nodal pathways were demonstrated by the extra-
stimulus technique during pacing of the right
atrium in a postoperative study. No atrial echo or
tachycardia was induced during the postoperative
study, and the patient has had no spontaneous
tachycardia in the postoperative period.

Refractory periods of the fast and slow atrio-
ventricular nodal pathways were interesting because
the effective refractory period and functional
refractory period of both fast and slow atrio-
ventricular nodal pathways measured using stimula-
tion of the coronary sinus were equal to or less than
the same refractory period measured using stimula-
tion of the right atrium.

Discussion

This study shows the importance of basing criteria
diagnosing tachycardias on the behaviour of the
tachycardia and not on the type of atrioventricular
conduction present. For example, the presence of
an initial delta wave on the QRS complex of an
electrocardiogram recorded during sinus rhythm is
a clinical marker for an abnormality of atrio-
ventricular conduction in the anterograde direction
in patients with the Wolff-Parkinson-White
syndrome. Dual atrioventricular nodal pathways are
a clinical electrophysiological marker for another
abnormality of atrioventricular conduction. Paroxysmal supraventricular tachycardia can occur
in patients with either abnormality. In this study
both abnormalities of atrioventricular conduction
were present in five patients with paroxysmal
supraventricular tachycardia. It is important to
know the correct aetiology because paroxysmal
supraventricular tachycardia caused by re-entry
over an accessory pathway can be cured by operative
division of the accessory pathway. In contrast, the
operative treatment of paroxysmal supraventricular
tachycardia resulting from re-entry within the
atrioventricular node is division of the His bundle
and implantation of a permanent pacemaker.

How often these abnormalities of atrioventricular
conduction coexist is not known. Wells has
suggested that tachycardia caused by re-entry
within the atrioventricular node should occur in
patients with the Wolff-Parkinson-White syndrome
with an incidence similar to that seen in the general
population. Simultaneous occurrence has been
inferred from alternating cycle lengths recorded
during tachycardia, but well studied and docu-
mented cases are rare. The prevalence of dual
atrioventricular nodal pathways was 10 per cent in
a large study of patients with conduction system
disease and this figure is consistent with the
finding of dual atrioventricular nodal pathways in
two of 19 (cases 4 and 5 of this report) consecutive
patients with the Wolff-Parkinson-White syndrome
studied after surgical correction of ventricular
pre-excitation.

In many patients with Wolff-Parkinson-White
syndrome, a diagnosis of dual atrioventricular nodal
pathways cannot be made. Discontinuities in the
curve of H1–H2 intervals generated by changing
coupling intervals A1–A2 can only be shown in
patients whose accessory atrioventricular pathway
has an effective refractory period in the anterograde
direction that exceeds that of the fast atrioventricular
nodal pathway. Cases 4 and 5 are examples of this.
In these patients dual atrioventricular nodal
pathways were identified only after operative
division of the accessory pathway.

We have seen one additional patient with the
Wolff-Parkinson-White syndrome who was sus-
pected of having dual atrioventricular nodal
pathways because tachycardia with two distinct
cycle lengths was observed. The sequence of
retrograde activation of the atrium was identical
during tachycardias with the two cycle lengths and
began in the lateral left atrium; the only difference
between the two tachycardias was the length of the
AH interval. Sudden transitions from the slow to
the fast tachycardia may occur both spontaneously
and after programmed ventricular stimuli.

Study by the atrial extrastimulus technique may
suggest that a complex form of re-entrant tachy-
cardia is present. When refractory periods were
measured with the extrastimulus technique during
pacing of the atrium in cases 1 and 3, atrial echoes were initiated by premature stimuli that were conducted over both the fast and slow atrioventricular nodal pathways. In most descriptions of tachycardia caused by re-entry within the atrioventricular node, atrial echoes were initiated by premature stimuli which were conducted only over the slow atrioventricular nodal pathway. Note that Fig. 2 is identical to figures made from data recorded in patients with tachycardia resulting from re-entry within the atrioventricular node and dual atrioventricular nodal pathways. Endocardial mapping with a catheter in the coronary sinus was required to demonstrate the retrograde atrial activation from an accessory atrioventricular pathway.

Electrophysiologic testing has been very useful in the evaluation of atrioventricular conduction, in determining the etiology of arrhythmias, and in providing the basis for development of surgical techniques to manage arrhythmias that are refractory to control with drugs. The results of this study clearly show the important distinction between abnormalities of atrioventricular conduction and the arrhythmias that accompany them. Criteria for the diagnosis of arrhythmias must be based on study of the arrhythmias themselves.

References

23. Spurrell RAJ, Krikler D, Sowton E. Two or more atrioventricular nodal pathways in association with either a James or Kent extranodal bypass in 3 patients with
Wolff-Parkinson-White syndrome


Requests for reprints to Dr Edward L C Pritchett, PO Box 3477, Duke University Medical Center, Durham, North Carolina 27710, USA.