Aortic regurgitation

Detection of left ventricular dysfunction by exercise echocardiography

WALTER PAULSEN†, DEREK R BOUGHNER, JOAN PERSAUD, LOUISE DEVRIES

SUMMARY Left ventricular performance was assessed in 20 symptom free patients and 10 with symptoms, all with isolated aortic regurgitation, by measuring the echocardiographic peak velocity of circumferential fibre shortening (echo peak Vcf) at rest and during graded bicycle ergometer exercise in the supine position. The normal left ventricular response during such exercise was first determined in 20 healthy controls.

On the basis of their resting and exercise echo peak Vcf, the 30 patients with aortic regurgitation could be separated into three groups: Group 1 comprised 11 symptom free patients with a normal resting echo peak Vcf which increased normally with exercise; group 2 comprised nine symptom free patients with a normal resting echo peak Vcf but with a subnormal response to exercise; group 3 consisted of 10 patients with symptoms with a depressed resting echo peak Vcf which remained subnormal with exercise. Subsequent cardiac catheterisation disclosed normal ejection fractions in patients in group 1, borderline ejection fractions in those in group 2, and reduced ejection fractions in those in group 3.

Echocardiographic assessment of left ventricular performance during supine isotonic exercise may provide a simple noninvasive method for the early detection of left ventricular dysfunction in symptom free patients with aortic regurgitation.

Once heart failure has occurred in patients with chronic aortic regurgitation, valve replacement may prove ineffective in restoring normal myocardial function.†§ Echocardiography has been suggested as a simple means of detecting early impairment of left ventricular function in such patients§ and the finding of impaired myocardial performance in the absence of clinical heart failure should prompt additional invasive studies.§ On examining those reports,§ however, it is apparent that difficulties may be encountered in this assessment. Though mean values for the echocardiographic variables of myocardial function may clearly differentiate normal from abnormal groups, there can be considerable overlap of individual values, and the diagnostic accuracy in a specific patient may be suspect. Since echocardiograms are normally done only at rest, we felt that the addition of exercise might further differentiate those patients with impaired ventricular function from those whose myocardium was normal. This approach, which has recently been used to detect wall motion abnormalities during myocardial ischaemia,§ could be a valuable method for the improved assessment of patients with chronic aortic regurgitation.

Methods

PATIENTS

All patients with isolated aortic regurgitation who had cardiac catheterisation at our centre over a two year
period were studied. Patients with associated aortic stenosis (>10 mmHg left ventricular to aortic gradient), a malfunctioning prosthetic aortic valve, mitral valve disease, coronary artery disease (>50% stenosis), cardiomyopathy, or hypertension (diastolic blood pressure >95 mmHg), were deliberately excluded. Eight patients with isolated aortic regurgitation were also excluded because we could not obtain adequate quality echocardiograms during exercise. The final study population consisted of 30 patients, 26 men and four women, with a mean age of 46±13 years (range 15 to 65 years). Twenty patients had no symptoms, i.e. no history of exercise intolerance, chest pain, lightheadedness, syncope, or heart failure. Functionally, such patients were in New York Heart Association Class I.9 The remaining 10 patients had one or more of these symptoms and were in New York Heart Association Classes II–IV. Left ventricular hypertrophy on electrocardiography was diagnosed by using the criteria of Romhilt and Estes (five points or more).

At the time of the study, three of the patients with symptoms were taking digitalis. The remaining 27 patients were either on no cardiac drugs or these had been discontinued at least one week before the study.

NORMAL SUBJECTS

Twenty normal healthy subjects were also studied, found to be free of heart disease by history, physical examination, electrocardiography, and echocardiography. There were 16 men and four women with a mean age of 33±9 years (range 18 to 46). None was taking any drugs.

ECHOCARDIOGRAPHY

Echocardiograms were obtained using a Unirad, Series C echocardiographic unit equipped with a Honeywell 1858 strip chart recorder. Patients and normal subjects were studied supine in the slight left lateral position with the transducer positioned in the fourth or fifth left intercostal space. The left ventricular minor axis diameter was recorded by directing the ultrasound beam just inferior to the mitral valve and recordings were made at a paper speed of 100 mm/s (Fig. 1). Echocardiograms were obtained only at end expiration and from the same interspace with the same anatomical landmarks present throughout the study in an attempt to minimise spurious changes of left ventricular dimensions.

Isotonic exercise was performed using a Siemens-

![Fig. 1 Left ventricular echogram of a symptom free patient with aortic regurgitation; paper speed 100 mm/s at rest and during supine bicycle ergometer exercise. Note the obvious increase in peak Vcf with exercise, implying normal left ventricular functional reserve. Abbreviations: IVS, interventricular septum; LVPW, left ventricular posterior wall; ECG, electrocardiogram; Vcf, velocity of circumferential fibre shortening.](image-url)
Elema bicycle ergometer system mounted vertically at the foot of the bed. Recordings of left ventricular echocardiograms and measurements of heart rate and blood pressure were obtained at rest and at one minute intervals during supine bicycle ergometer exercise to a maximum of six minutes (Fig. 1). The initial ergometer workload was 25W and was increased by 25W each minute to a maximum of 150W. Though total cardiocirculatory adaptation to any magnitude of exertion does not occur for two to three minutes, it was technically difficult to obtain adequate quality left ventricular echocardiograms throughout such a prolonged graded exercise procedure and, since the cardiovascular adjustments to a submaximal workload reach a nearly steady state within the first minute of isotonic exercise, we elected to increase the workload at one minute intervals.

MEASUREMENTS AND CALCULATIONS

Analysis of the instantaneous left ventricular dimension and calculation of its peak rate of change was performed using a Hewlett-Packard Model 1838 desk top computer, a model 986A digitiser, and x-y plotter combination by a method modified from that of Gibson et al.15 16 The recordings of the left ventricular echograms were placed on a digitising table and the endocardial echoes of the septum and posterior wall were digitised beginning at the onset of the R wave and ending with the T wave. The computer noted the position of these two echoes and automatically derived the instantaneous left ventricular diameter. This diameter measurement was divided by the initial diameter and the ratio was displayed by the x-y plotter as a "displacement ratio" versus time curve (Fig. 2).

Peak velocity of circumferential fibre shortening (Vcf) was obtained manually by calculating the slope of the tangent to the mid portion of this curve (Fig. 3), thus giving the normalised peak Vcf in circumferences per second (circ/s). We chose to calculate peak Vcf in this fashion rather than having the computer calculate the instantaneous first derivative of the left ventricular diameter curve, as described by others,15 17 since we found that the normalised instantaneous diameter curve or "displacement ratio" contained sufficient noise (produced by "hand-shake" when tracing the echo) to make such a computer estimate of peak Vcf poorly reproducible. Such irregularities, however, could be easily compensated for by the manual method, resulting in a high degree of reproducibility for the peak Vcf estimate. The left ventricular end-diastolic diameter in mm was the smallest dimension measured between the endocardial surfaces of the left ventricular septum and the posterior left ventricular wall (Fig. 1). The percentage fractional shortening (%AD) was calculated from the formula:

\[
%\Delta D = \frac{EDD - ESD}{EDD} \times 100
\]

where EDD=end-diastolic diameter and ESD=end-systolic diameter.

Measurements of four successive end expiratory beats at rest and during exercise in four randomly selected normals and four randomly selected patients with chronic aortic regurgitation were carried out by two observers independently in order to establish the beat to beat and interobserver variation in the peak Vcf calculation. One way analysis of variance indicated good reproducibility as evidenced by a coefficient of variation of less than 5%. Three of the
patients with chronic aortic regurgitation repeated supine bicycle exercise under similar conditions within one week of their initial studies. They each completed exercise workloads similar to those in their initial tests. The heart rate, systolic blood pressure, left ventricular end-diastolic diameter, and peak Vcf at rest and at one minute intervals during exercise were not significantly different between the two exercise tests. Thus, reproducibility did not seem to be a problem.

In the 20 controls, peak Vcf was calculated at one minute intervals throughout the six minutes of exercise in order to determine the normal ventricular response to graded exercise to a maximum load of 150W. In the 30 patients with chronic aortic regurgitation, the peak Vcf was calculated at rest and during the final stage of exercise achieved by the patient. The echocardiographic measurements were made during expiration and represented the average of three cardiac cycles.

CATHETERISATION

All 30 patients with chronic aortic regurgitation underwent resting left and right heart catheterisation within three days of the echocardiographic evaluation. Left ventricular ejection fractions were calculated from the right anterior oblique cineangiograms using the single plane method of Sandler and Dodge.18 Left ventricular cardiac output was calculated by multiplying angiographically determined stroke volume by heart rate. The Fick cardiac output was determined before angiography, and the difference between the ventricular output and the Fick output provided the percentage of aortic regurgitation.19 Coronary arteriography was performed in all patients over 40 years old (23 patients). The controls did not undergo cardiac catheterisation.

Statistical analysis was performed using Student's t test and analysis of variance.

Results

NORMAL SUBJECTS

In the normal subjects, the peak Vcf at rest ranged from 1.4 to 2.2 circ/s with a mean of 1.78±0.21 (standard deviation) with the 95% confidence limits lying between 1.68 and 1.88 circ/s. We used these values to define the normal range of peak Vcf at rest. With six minutes of exercise, peak Vcf increased in a stepwise fashion to 2.39±0.22 circ/s (95% confidence limits 2.79 to 2.99 circ/s), and when the heart rate exceeded 100 beats/min, it invariably increased at least 0.30 circ/s above the value obtained at rest. Since all patients in this study attained heart rates above 100 beats/min during exercise an increase of peak Vcf of 0.30 circ/s or more was accepted as normal in the patients with aortic regurgitation.

PATIENTS WITH AORTIC REGURGITATION

The clinical data for the 30 patients with chronic aortic regurgitation are presented in the Table. On the basis of their resting and exercise echocardiographic peak Vcf, they could be divided into three groups (Fig. 4).

Group 1 consisted of 11 symptom-free patients who
Table

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Age/ Sex</th>
<th>NYHA ECG Class</th>
<th>Echocardiography</th>
<th>Catheter study</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>HR (beats/min)</td>
<td>BP (mmHg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rest Ex</td>
<td>Rest Ex</td>
</tr>
<tr>
<td>Group 1: Symptom free</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>49/M</td>
<td>I</td>
<td>+</td>
<td>70 112</td>
</tr>
<tr>
<td>2</td>
<td>19/M</td>
<td>I</td>
<td>-</td>
<td>69 148</td>
</tr>
<tr>
<td>3</td>
<td>24/M</td>
<td>I</td>
<td>+</td>
<td>66 108</td>
</tr>
<tr>
<td>4</td>
<td>48/F</td>
<td>I</td>
<td>+</td>
<td>78 105</td>
</tr>
<tr>
<td>5</td>
<td>55/M</td>
<td>I</td>
<td>-</td>
<td>85 133</td>
</tr>
<tr>
<td>6</td>
<td>18/F</td>
<td>I</td>
<td>-</td>
<td>64 108</td>
</tr>
<tr>
<td>7</td>
<td>42/M</td>
<td>I</td>
<td>+</td>
<td>72 104</td>
</tr>
<tr>
<td>8</td>
<td>47/M</td>
<td>I</td>
<td>+</td>
<td>80 120</td>
</tr>
<tr>
<td>9</td>
<td>46/F</td>
<td>I</td>
<td>+</td>
<td>71 125</td>
</tr>
<tr>
<td>10</td>
<td>15/M</td>
<td>I</td>
<td>-</td>
<td>68 130</td>
</tr>
<tr>
<td>11</td>
<td>48/M</td>
<td>I</td>
<td>-</td>
<td>65 118</td>
</tr>
<tr>
<td>Mean 37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Group 2: Symptom free

			Rest Ex							
Mean 44										
SD 9										

Group 3: With symptoms

			Rest Ex							
Mean 58										
SD 5										

Abbreviations: NYHA, New York Heart Association; ECG, electrocardiogram; LVH, left ventricular hypertrophy; HR, heart rate; EDD, left ventricular end-diastolic diameter; ESD, left ventricular end-systolic diameter; Ex, exercise; pVcf, peak velocity of circumferential fibre shortening; EF, ejection fraction; RF, regurgitant fraction; % ΔD, % fractional shortening.

had a normal resting peak Vcf (≥1.4 circ/s) which increased normally with exercise. Their resting peak Vcf of 1.7±0.15 circ/s (range 1.4 to 1.9 circ/s) was not significantly different from that of normal subjects at rest (1.78±0.21 circ/s). With exercise, peak Vcf increased significantly (p<0.001) to 2.77±0.20 circ/s, a value not significantly different from that of normal subjects during exercise (2.89±0.21 circ/s). In addition, each patient had increased peak Vcf by at least 0.30 circ/s above the resting value. At subsequent cardiac catheterisation, all 11 patients in this group had normal ejection fractions, the mean...
Exercise echo in aortic regurgitation

being 67±6 with a range of 59 to 78 (normal ≥55%).

Group 2 consisted of nine symptom-free patients
who had a normal resting peak Vcf which failed to
increase normally with exercise. Thus, though their
resting peak Vcf of 1·66±0·17 circ/s (range 1·4 to 1·9
circ/s) was not significantly different from that of
normal subjects at rest (1·78±0·21 circ/s), their peak
Vcf during exercise decreased slightly but insignifi-
cantly from 1·65±0·17 to 1·59±0·17 circ/s. More-
over, no patient in this group increased peak Vcf by
more than 0·3 circ/s with exercise. At subsequent
cardiac catheterisation, patients in this group were
found to have slightly reduced ejection fractions, the
mean being 52±3% (range 48 to 57%).

Group 3 consisted of 10 patients with symptoms
who all had a depressed resting peak Vcf (<1·4
circ/s). With exercise, the peak Vcf either remained
unchanged or was further reduced. Thus, their
resting peak Vcf of 1·09±0·15 circ/s (range 0·8 to 1·3
circ/s) was significantly lower than that of normal
subjects at rest (1·78±0·21 circ/s) (p<0·001), and
with exercise it decreased to 0·86±0·18 circ/s
(p<0·05). In this group, ejection fractions at cardiac
catheterisation were all conspicuously reduced, with a
mean of 39±7% (range 29 to 46%).

The heart rate during exercise did not differ
significantly between the three groups; in group 1
119±13 beats/min (range 104 to 148 beats/min), in
group 2 123±14 beats/min (range 107 to 140 beats/
min), and in group 3 122±12 beats/min (range 105 to
144 beats/min) (Table).

PER CENT FRACTIONAL SHORTENING
At rest, the %ΔD of the 10 patients with symptoms
(group 3) was significantly lower than that of the 20
symptom free patients (groups 1 and 2); 27±3 versus
36±4% (p<0·001) (Table). It was 31% or less in all 10
patients with symptoms and greater than 31% in 17 of
the 20 without them. There was no significant
difference between the resting %ΔD in group 1
(36±4%) and in group 2 (36±4%).

With exercise, the %ΔD of patients in group 1
increased from 36±4 to 43±5% (NS) and that of
patients in group 2 increased from 36±4 to 40±4% (NS).
Thus, echocardiographic %ΔD, unlike echocardiographic peak Vcf, was not able to
distinguish symptom free patients with catheter
proven normal left ventricular function (group 1)
from those with borderline left ventricular function
(group 2). Patients in group 3 decreased their %ΔD
insignificantly from 27±3 to 26±4% with exercise.

END-DIASTOLIC DIMENSIONS
The resting left ventricular end-diastolic diameter of
the 10 patients with symptoms was significantly larger
than that of the 20 who were symptom free, 75·5±5
versus 63·5±5 mm (p<0·001). Thus, all patients with
symptoms had an end-diastolic diameter greater than
66 mm and, in addition, they all had a depressed peak
Vcf at rest. Of the 20 symptom free patients,
however, all of whom had a normal resting peak Vcf,
there were five with end-diastolic diameters greater
than 66 mm (Table). Two of these five showed a
normal increase in peak Vcf with exercise while in the
remaining three, exercise peak Vcf was subnormal.
It was therefore necessary to determine whether the
exercise peak Vcf was affected by the degree of left
ventricular dilatation in the 20 symptom free patients.
We found that there was wide variation in exercise
peak Vcf at any level of resting end-diastolic diameter
(r=0·35, not significant) so that end-diastolic diam-
eter at rest in symptom free patients could not be
used to predict their exercise peak Vcf.

The end-diastolic diameter did not change signifi-
cantly between rest and exercise for any of the
subgroups (Table). The 20 normal subjects also
showed no significant change in end-diastolic diameter
during exercise supine (50±2±5 mm at rest
versus 50±8±6 mm during exercise).

END-SYSTOLIC DIMENSIONS
At rest the end-systolic diameter of the 10 patients
with symptoms (group 3) was significantly larger than
that of the 20 symptom free subjects (groups 1 and 2);
54±4 versus 41±5 mm (p<0·001) (Table). The
end-systolic diameter was greater than 46 mm in all of
the former and less than 46 mm in 18 of the 20 of the
latter. Of the two symptom free patients with resting
end-systolic diameters greater than 46 mm, one
showed a normal increase of peak Vcf with exercise
while in the other exercise peak Vcf was subnormal.
There was no correlation (r=0·22, not significant)
between resting end-systolic diameter and exercise
peak Vcf for the 20 symptom free subjects.

During exercise, the end-systolic diameter of the 10
patients with symptoms (group 3) was significantly
larger than the 20 without them (groups 1 and 2)
55±6 versus 38±5 mm (p<0·001). The end-systolic
diameter was 47 mm or greater in all 10 of the former
and less than 47 mm in 19 of the latter. There was no
correlation between exercise end-systolic dimension
and exercise peak Vcf (r=0·42, not significant) in
the 20 symptom free subjects. Thus, echocardiographic
end-systolic dimension, unlike echocardiographic
peak Vcf, was not able to distinguish between
the symptom free patients with normal left ventricular
function (group 1) and those with borderline left
ventricular function (group 2).

SYSTOLIC ARTERIAL PRESSURE
The maximum systolic arterial pressure during
exercise did not differ significantly between the three
groups. The maximum systolic arterial pressure during exercise in patients in group 1 was 181±21 mmHg (range 145 to 210 mmHg), for those in group 2 180±18 mmHg (range 140 to 205 mmHg) and for those in group 3 193±17 mmHg (range 155 to 215 mmHg) (Table). These values were not significantly different from those found in normal subjects during exercise (183±17 mmHg, range 135 to 200 mmHg).

There was no correlation between exercise peak Vcf and maximum systolic pressure during exercise either for the entire group of patients with aortic regurgitation (r=0.20, not significant), or the subgroups (groups 2 and 3) with a subnormal peak Vcf response during exercise (r=0.16, not significant). Thus, the maximum systolic pressure attained during exercise could not be used to predict peak Vcf during exercise.

Discussion

In patients with chronic aortic regurgitation, the detection of early impairment of left ventricular performance remains an important clinical problem. Once heart failure has occurred valve replacement may prove ineffective in restoring normal myocardial function.1-5 Though contrast angiographic ejection phase indices of myocardial performance have been recommended as the most reliable means of assessing left ventricular function,20-24 their clinical application, for periodic assessments aimed at detecting early impairment of myocardial function, are limited by the need for repeated cardiac catheterisation. Echocardiography is a simple non-invasive technique which provides similar information about left ventricular performance but has the advantage of safety, repeatability, and relatively low cost. Several studies have shown that resting echocardiographic indices of left ventricular performance provide a satisfactory means of separating groups of patients with normal left ventricular function from groups of patients with depressed left ventricular function.6 7 25-28 The presence of significant overlap between such groups, however, can lead to difficulty in distinguishing normal function from impaired function in an individual patient.

Our results indicate that in symptom free patients with chronic aortic regurgitation, echocardiography performed during exercise is considerably more sensitive in detecting mild left ventricular dysfunction than echocardiography performed at rest. All 20 symptom free patients had a normal echocardiographic peak Vcf at rest. Only 11 (group 1), however, had a normal increase in peak Vcf with exercise (Fig. 4). These 11 patients all had normal left ventricular function at subsequent cardiac catheterisation. The nine remaining symptom free patients (group 2) with normal resting echocardiographic peak Vcf failed to increase their peak Vcf normally during exercise and all had slightly depressed ejection fractions at cardiac catheterisation, suggesting the presence of mild left ventricular dysfunction. Moreover, in these nine patients, the abnormal peak Vcf response during exercise could not be predicted from the presence of electrocardiographic left ventricular hypertrophy, the left ventricular diastolic or systolic dimensions, the maximum systolic pressure attained during exercise, or a combination of these factors.

In contrast, all 10 patients with symptoms (group 3) had echocardiographically detectable left ventricular dysfunction at rest, and the addition of exercise merely confirmed this fact and added no further useful information. Subsequent cardiac catheterisation in this group further confirmed the presence of severely depressed left ventricular function.

In general, a failure of peak Vcf to increase during exercise does not necessarily imply that myocardial contractility is abnormal. Vcf is not only sensitive to inotropic stimulation, but is also inversely related to acute changes in afterload.29 Since afterload increases during exercise it could preclude an increase in the Vcf if it acted alone. Exercise, however, is associated with a distinct increase in contractility30 which tends to increase Vcf. Apparently, the latter effect predominates resulting in a net increase in Vcf during exercise in subjects with normal left ventricular functional reserve.16 In the present study, the increase in afterload during exercise was not measured. The systolic blood pressure, however, which is an indirect reflection of afterload,31 was measured both at rest and during exercise and did not differ significantly between the three groups of patients (Table). Thus, the influence of afterload upon exercise peak Vcf was probably the same for each group and can be excluded from consideration for purposes of comparison. Finally, the presence of myocardial dysfunction in patients who failed to increase their echocardiographic Vcf significantly with exercise is supported by the finding of reduced ejection fractions in these patients at subsequent cardiac catheterisation. Though the resting angiographic ejection fraction has limitations similar to those associated with the Vcf, it has proved to be a valuable estimate of left ventricular function clinically.20-24

Our finding, that the noninvasive assessment of left ventricular performance during exercise is a valuable means of detecting early ventricular dysfunction in patients with aortic regurgitation, is in keeping with recent observations by Borer et al.32 Using noninvasive radionuclide cineangiography, these workers showed that though the resting ejection fraction was normal in 21 symptom free patients with isolated aortic regurgitation, in only 13 was the exercise...
ejection fraction normal. The eight remaining patients
had subnormal exercise ejection fractions, suggesting
the presence of impaired myocardial performance not
apparent at rest. Compared with exercise radionuclide cineangiography, exercise echocardiography
examines instantaneous events in each cardiac cycle
rather than combining several cycles, imposes no
radiation exposure, and is relatively inexpensive. The
greatest limitation of exercise echocardiography is the
difficulty of obtaining high quality left ventricular
echograms during exercise in all patients examined.
Our success rate of obtaining such echograms during
exercise in patients with aortic regurgitation was
approximately 75 per cent. This compares favourably
with the experience of Sugihita and Koseki who
obtained satisfactory exercise left ventricular echo-

cardiograms in 83% of their patients.33

In the present study, we found echocardiographic
peak Vcf to be a more reliable predictor of contrast
angiographic ejection fraction than either the echo-
diagnostic % of the end-systolic dimensions.
This is consistent with previous observations where
peak Vcf was found to be a more sensitive measure of
left ventricular function than other echocardiographic
indices currently in use.28

CLINICAL IMPLICATIONS

This study shows that in symptom free patients with
chronic aortic regurgitation, exercise echocardiog-

aphy appears to be a simple noninvasive method
of detecting early left ventricular dysfunction not
apparent at rest. Evidence of impaired myocardial
function in such patients may signal the need for
additional invasive studies and consideration for
operation.

References

1 Gault JH, Covell JW, Braunwald E, Ross J Jr. Left
ventricular performance following correction of free
2 Henry WL, Morganroth J, Clark CE, et al. Influence of
myocardial function on the results of operation in aortic
regurgitation (abstract). Clin Res 1975; 23: 186A.
3 Venco A, St John Sutton MG, Gibson DG, Brown DJ.
Non-invasive assessment of left ventricular function after
correction of severe aortic regurgitation. Br Heart J 1976;
4 Borer JS, Bacharach SL, Green MV, et al. Left
ventricular function during exercise before and after aortic
valve replacement (abstract). Circulation 1977; 56:
5 Pantely G, Morton M, Rahimtoola SH. Effects of
successful, uncomplicated valve replacement on ventricu-
lary hypertrophy, volume, and performance in aortic
stenosis and in aortic incompetence. J Thorac Cardiovasc
6 Danford HG, Danford DA, Mielke JE, Peterson LF.
Echocardiographic evaluation of the hemodynamic
effects of chronic aortic insufficiency with observations on
left ventricular performance. Circulation 1973; 48:
253–62.
7 McDonald IG. Echocardiographic assessment of left
ventricular function in aortic valve disease. Circulation
8 Mason SJ, Weiss JL, Weisfeldt ML, Garrison JB,
Fortuin NJ. Exercise echocardiography: detection of
wall motion abnormalities during ischemia. Circulation
9 New York Heart Association Criteria Committee.
Nomenclature and criteria for diagnosis of disease of the
heart and great vessels. 7th ed. Boston: Little Brown,
1972: 286.
10 Romhilt DW, Estes EH. A point-score system for the
ECG diagnosis of left ventricular hypertrophy. Am Heart
11 Astrand PO, Rodahl K. Textbook of work physiology.
12 Donald KW, Bishop TM, Cumming G, Wade OL. The
effect of exercise on the cardiac output and circulatory
13 Van Citters RL, Franklin DL. Cardiovascular perfor-
manence of Alaska sled dogs during exercise. Circ Res
1969; 24: 33–42.
14 Xenakis AP, Querry VM, Spodick DH. Immediate
cardiac response to exercise: physiological investigation
by systolic time intervals at graded workloads. Am Heart
15 Gibson DG, Brown D. Measurement of instantaneous
left ventricular dimension and filling rate in man, using
16 Paulsen WJ, Boughner DR, Friesen A, Persaud JA.
Ventricular response to isometric and isotonic exercise:
echocardiographic assessment. Br Heart J 1979; 42:
521–7.
17 Decoodt PR, Mathey DG, Swan HJC. Automated
analysis of the left-ventricular diameter time curve from
9: 549–58.
18 Sandler H, Dodge HT. The use of single plane
angiograms for the calculation of left ventricular
19 Hunt D, Baxley WA, Kennedy JW, Judge TP, Williams
JE, Dodge HT. Quantitative evaluation of cineangio-

tography in the assessment of aortic regurgitation. Am J
20 Miller GAH, Swan HJC. Effect of chronic pressure and
volume overload on left heart volumes in subjects with
21 Miller GAH, Kirklin JW, Swan HJC. Myocardial
function and left ventricular volumes in acquired
22 Kennedy JW, Twiss RD, Blackmon JR, Dodge HT.
Quantitative angiography III. Relationships of left
ventricular pressure, volume, and mass in aortic valve
23 Manolas J, Krayenbuehl HP. Comparison between
apexcardiographic and angiographic indexes of left
ventricular performance in patients with aortic incom-

Requests for reprints to Dr Derek R Boughner, Cardiac Investigation Unit, University Hospital, PO Box 5339, Terminal A, London, Ontario, Canada N6A 5A5.
Subacute bacterial endocarditis

A survey is currently being carried out by the British Cardiac Society and the Medical Services Study Group of the Royal College of Physicians. Though improvement of dental prophylaxis is one objective, the survey is already yielding other valuable information. It is hoped that proformas will be received in respect of a high proportion of patients with subacute bacterial endocarditis in the British Isles seen during 1981 and 1982 and readers are asked to arrange for them to be submitted in respect of any cases that come to their notice. Proformas can be obtained from Sir Cyril Clarke, Medical Services Study Group, King's Fund Centre, 126 Albert Street, London NW1 7NF (tel. 01-267 6111, ext. 263) to whom they should be returned.

Future meetings

(1) Cardiovascular System Dynamics Society Vth International Conference, Oxford, 28 September to 1 October 1982. For further details write to Dr G d J Lee, Cardiac Department, John Radcliffe Hospital, Oxford.

(2) International Symposium on Coronary Arteries in Infants and Children, Tel Aviv, Israel, 17 to 22 October 1982. For further details write to D A Schneeweiss, Secretariat: PO Box 29784, Tel Aviv 61297, Israel.

(3) VIIth World Symposium on Cardiac Pacing, 1 to 5 May 1983, Vienna, Austria. For information write to A 1107, PO Box 80, Vienna, Austria.

(4) The Autumn Meeting of the British Cardiac Society will take place at Wembley on 6 and 7 December 1982 and the closing date for receipt of abstracts is 11 August 1982.

Erratum

Aortic regurgitation: detection of left ventricular dysfunction by exercise echocardiography (1981; 46: 380–8). On page 383, Fig. 4 should have displayed the p values as follows:
p<0·001 for normal, p<0·001 for group 1, NS for group 2, and p<0·05 for group 3. We regret the error.