Clinical evaluation of the efficacy of oral amiodarone

WILLIAM J MCKENNA, DENNIS M KRIKLER
From the Division of Cardiovascular Disease, Department of Medicine, Royal Postgraduate Medical School, London

Amiodarone is an effective antiarrhythmic agent whose wider use has been limited by unwanted effects. As most of the troublesome and serious side effects are dose related it is particularly important to use the minimum effective maintenance dose, but this may be difficult to determine because of the pharmacological properties of amiodarone. Bioavailability in normal volunteers varies widely (20–80%) and this must contribute to the wide range of dosage required to control a particular arrhythmia: from as little as 400 mg weekly up to 800 mg daily. In addition, the assessment of drug efficacy is complicated by the long elimination half life (1½) which is usually 30 to 60 days but which may be much greater particularly in obese patients. Evaluation of symptoms and electrocardiographic monitoring do not permit differentiations of drug failure from the need for additional amiodarone, nor do they identify those patients in whom arrhythmia may be controlled with less amiodarone. A clinical marker of drug efficacy is needed to help determine when to increase dosage if arrhythmia persists and when to decrease when arrhythmia is controlled.

The demonstration by Debbas and her colleagues of a strong correlation between the change in QT interval is thus timely. It is an indication of the difficulties inherent in treating such patients that this was possible in only nine of their group of 30 patients. These findings indicate that when reliable measurements can be made, which is only possible in the absence of other cardioactive medications, changes in QT interval may be a useful marker of myocardial impregnation and drug effect. Indeed in larger series others have found that the QT interval may not be so reliable. This is partly because new U waves often appear either within the T wave or isolated from it. Serial observations in individual patients may reveal only retrospectively that QT prolongation was due to incorporation of U waves within the measurement. The significance of U waves during treatment with amiodarone is uncertain; they have been observed to appear and disappear during treatment and they may obscure the precise end of the QT interval. In addition, increases in the QT interval are an insensitive marker of myocardial impregnation as patients demonstrate control of arrhythmia in the absence of QT prolongation and the correlation of antiarrhythmia effect and QT prolongation is poor. In isolated patients assessment of the QT interval provides valuable clinical information: shortening during amiodarone may indicate failure of compliance or the development of thyrotoxicosis; pronounced lengthening may identify those at increased risk of torsade de pointes. In the majority, however, measurement of the QT interval is not a useful guide to the identification of those who may benefit from alteration in dosage, and from the present work one may achieve success in a maximum of one third of patients.

Others have suggested that reverse triiodothyronine levels are useful in monitoring efficacy and side effects. Amiodarone inhibits the peripheral conversion of thyroxine to triiodothyronine in favour of reverse triiodothyronine. During chronic treatment most patients will show an increase in thyroxine, a normal or low T3, and an increase in reverse T3 unaccompanied by alteration in thyroid state. Though an approximate therapeutic as well as toxic range of reverse T3 has been determined in a small group of patients who experienced suppression of arrhythmia during amiodarone, the role of this measurement in relation to dosage changes remains to be defined. Because it is influenced by stress, concurrent illness, and thyroid disease, reverse triiodothyronine will possibly not prove the reliable index we seek. In our investigations measurement of plasma drug concentrations has provided a valuable guide to the appropriateness and magnitude of dosage changes. Though a
specific therapeutic range remains to be determined
control of arrhythmias is most often achieved with
plasma amiodarone and desethylamiodarone concentra-
tions of 1.5 μg/ml or less whereas higher levels are
associated with an increased incidence of unwanted
effects.7 Thus when arrhythmia is controlled with low
plasma concentrations it may be appropriate to reduce
the daily dose by a small amount while a larger reduc-
tion is indicated when plasma levels are high. When
arrhythmia is not controlled a low plasma level sug-
gests reduced bioavailability and the requirement for
an increased dose, while high plasma levels indicate
the need for additional or alternative therapy. During
long term amiodarone treatment of patients with
hypertrophic cardiomyopathy and refractory
arrhythmia incremental dosage changes were guided by
electrocardiographic monitoring and measurement of
plasma amiodarone concentrations; in striving to
achieve the lowest effective maintenance dose serious
side effects were rare and only one of 53 patients stop-
ped taking amiodarone.8 This approach is feasible in
the management of arrhythmias which are not highly
malignant. Though the principle of achieving the
lowest effective dose is equally valid, alternative
methods are necessary in patients with ventricular
tachycardia which is prone to degenerate to fibrilla-
tion or which has been associated with impaired con-
sciousness. The role of programmed electrical stimula-
tion in this regard has been extensively explored but
is confused by conflicting results from major
centres.9–11 Though the inducibility of ventricular
tachycardia is not a predictor of subsequent effica-
cy,12,13 the characteristics of the arrhythmia may be
so.9,10
At present then there is no adequate single mea-
surement to guide alterations in treatment. The
findings of Debbas et al indicate that in a pure group
changes in the QT interval may be of clinical value.3
The strong correlation of plasma and myocardial
amiodarone concentrations which they demonstrated
suggests that plasma levels reflect myocardial
impregnation and that when they are available they may
be useful in guiding treatment.

References
1 Harris L, McKenna WJ, Rowland E, Holt DW, Storey
GCA, Krikler DM. Side effects of longterm amiodarone
2 McKenna WJ, Rowland E, Krikler DM. Amiodarone:
the experience of the past decade. Br Med J 1983; 287:
1654–6.
3 Debbas NMG, du Cailar C, Bexton RS, Demaille JG,
Cammm AJ, Puech P. The QT interval: a predictor of the
plasma and myocardial concentrations of amiodarone. Br
4 Rosenbaum MB, Chiale PA, Halpern MS, et al. Clinical
efficacy of amiodarone as an antiarrhythmic agent. Am J
Cardiol 1976; 38: 934–44.
5 Facquet PJ, Nivet M, Grosogoeat V, Alhomme P, Vac-
hon J. L'influence de l'amiodarone sur le rythme cardia-
6 Nademanee K, Singh BN, Hendrickson JA, Reed AW,
Melmed S, Hershman J. Pharmacokinetic significance of
serum reverse T3 levels during amiodarone treatment:
the potential method for monitoring chronic drug
7 Haiffajee CI, Love JC, Canada AT, Lesko LJ, Asdourian
G, Alpert JS. Clinical pharmacokinetics and efficacy of
amiodarone for refractory tachyarrhythmias. Circulation
8 McKenna WJ, Rowland E, Harris L, Holt D, Krikler
DM. Amiodarone treatment of refractory arrhythmia in
hypertrophic cardiomyopathy: determination of the
minimum effective dose [Abstract]. Circulation 1983; 68
(suppl): III–279.
9 Borggrefe M, Breithardt G, Seipel L. Value of serial
electrophysiological testing in the treatment of ventricular
tachyarrhythmias with amiodarone. Circulation 1983; 68
(suppl): III–381.
10 Horowitz LN, Spielman SR, Greenspan AN, Webb CR,
Kay HR. Utility of electrophysiologic testing of
amiodarone for ventricular tachyarrhythmias. Circulation
11 Waxman HL, Buxton AE, Marchlinski FE, Flores BT,
Rogers DP, Josephson ME. Amiodarone for sustained
ventricular tachyarrhythmias: electrophysiologic study is
not predictive of clinical efficacy. Circulation 1983; 68
(suppl): III–382.
Amiodarone. Clinical efficacy and electrophysiology during
long-term therapy for recurrent ventricular tachycar-
dia or ventricular fibrillation. N Engl J Med 1981; 305:
539–45.
13 Roy D, Waxman HL, Kienzl MG, Buxton AE, March-
linski FE, Josephson ME. Clinical characteristics and
longterm follow up in 119 survivors of cardiac arrest:
relation to inducibility at electrophysiologic testing. Am
J Cardiol 1983; 52: 969–74.