Effect of amiodarone on retrograde conduction and refractoriness of the His-Purkinje system in man

C P REDDY, C S KUO

From the Cardiology Division, Department of Medicine, Veterans Administration Medical Center and University of Kentucky College of Medicine, Lexington, Kentucky, USA

SUMMARY The effects of long term treatment with oral amiodarone on retrograde conduction (S₂H₂ interval) and refractoriness of the His-Purkinje system were studied in 11 patients using His bundle electrograms and the ventricular extrastimulus method. Ten patients had ventricular tachycardia and one supraventricular tachycardia. Electrophysiological studies were carried out before and after the patients had been taking their maintenance dose for a mean duration of 84 days. After amiodarone treatment the HV interval was prolonged in seven patients and unchanged in four. At comparable S₁S₂ intervals, the S₂H₂ intervals were longer after treatment with amiodarone in all patients than before. Similarly, the longest S₂H₂ intervals achieved after amiodarone were longer than the control values. Amiodarone significantly increased the relative, effective, and functional refractory periods of the His-Purkinje system. Thus amiodarone exerts important effects on the His-Purkinje system.

Amiodarone was originally introduced as a coronary vasodilator and antianginal agent in 1967. Subsequent studies have shown that amiodarone has pronounced antiarrhythmic properties with beneficial effect in a wide variety of arrhythmias. The electrophysiological actions responsible for the antiarrhythmic effect of amiodarone are, however, poorly understood. Several clinical studies have evaluated the effects of amiodarone on the functional properties of the atrioventricular node, atrioventricular accessory pathways, and ventricular myocardium. Nevertheless, the effects of amiodarone on conduction and refractoriness of the His-Purkinje system have not been systematically studied, and there is no agreement on the effects of amiodarone on the system. Whereas Heger et al and others reported prolongation of the HV interval by amiodarone, Nademanee et al found no effect on this interval. Similarly, conflicting results have been reported concerning the effect of amiodarone on the refractoriness of the His-Purkinje system. The present study was undertaken to assess the effect of long term treatment with oral amiodarone on retrograde conduction and refractoriness of the His-Purkinje system in a group of patients in order to increase our understanding of the mechanism of the antiarrhythmic effects of amiodarone.

Patients and methods

The study group consisted of 11 men aged between 38 and 73 (mean 59.8) years. Ten patients had recurrent ventricular tachycardia or ventricular fibrillation and one supraventricular tachycardia refractory to treatment with two or more approved antiarrhythmic drugs. Coronary artery disease was present in nine patients and no evidence of organic heart disease in two. All patients with coronary artery disease had suffered one or more myocardial infarctions.

Amiodarone was given as a loading dose of 1400 mg (four patients) or 1000 mg (seven patients) daily for an initial loading period ranging from 7 to 14 (mean ±SD) 10±2±2 days. Subsequently, all patients were given a maintenance dose of 400 to 800 mg daily.

Electrophysiological studies were performed in each patient before and after the patients had been taking their maintenance dose for 23 to 149 (mean ±SD) 84±45 days. Repeat studies were carried out to assess the efficacy of amiodarone in suppressing ventricular tachycardia. The mean total accumulated dose of amiodarone at the time of repeat study was
Amiodarone and His-Purkinje system conduction

63.5±32.6 g (range 18.4-106.8 g). These studies were performed using the standard pacing wire technique after informed consent had been obtained. Programmed stimulation was performed using a digital stimulator which delivered pulses of 1 ms duration at twice the diastolic threshold.

The study protocol consisted of (a) incremental ventricular pacing to study the ventriculotrial conduction; (b) retrograde refractory period studies at one or more basic cycle lengths, and (c) induction of ventricular tachycardia using single and double ventricular extrastimuli introduced during ventricular pacing.

Statistical analysis of electrophysiological data was performed using Student's t test for paired and unpaired data.

DEFINITION OF TERMS

S1, V1, H1, A1 represent the stimulus artefact, ventricular electrogram, His bundle electrogram, and atrial electrogram of the basic drive complex respectively. S2, V2, H2, A2 represent the stimulus artefact, ventricular electrogram, His bundle electrogram, and atrial electrogram of the induced extrasystole respectively. The SH interval was measured from the stimulus artefact to the onset of the His bundle electrogram.

Anterograde conduction intervals were defined as previously reported.

Relative refractory period of the His-Purkinje system is the longest V1V2 interval at which H2 emerges from the V2 electrogram. This definition was used with the knowledge that the true relative refractory period exceeds the defined value by a small amount since infra-His bundle delay must occur before H2 can emerge from the V2 electrogram.

Functional refractory period of the His-Purkinje system is the shortest V1H2 interval in response to any V1V2 interval. This definition was used with the knowledge that prolongation of the V1H2 interval by amiodarone diminishes any actual increase in the functional refractory period.

Effective refractory period of the His-Purkinje system was defined as previously described.

Effective refractory period and functional refractory period of the ventricular myocardium were defined as previously reported.

S2H2 block zone refers to the range of S2S3 intervals during which the S2 impulse is blocked retrogradely in both bundle branches distal to the site of stimulation but proximal to the His bundle recording site.

Results

The Table shows the retrograde electrophysiological data for individual patients and for the group as a whole. In control studies seven of 11 patients had 1:1 ventriculotrial conduction during basic drive. After amiodarone ventriculotrial conduction was present in one patient and absent at all ventricular drive rates in 10.

Retrograde His-Purkinje Conduction Time

At long S1S2 intervals the His bundle electrogram (H2) of the extrasystoles (V2) was hidden within the V2 electrogram, but at shorter S1S2 intervals retrograde conduction to the His bundle became slower, and the H2 deflection emerged from the ventricular electrogram (V2) (Fig. 1). Once the retrograde His bundle deflection (H2) emerged from the V2 electrogram further decrease in S1S2 interval resulted in a

<table>
<thead>
<tr>
<th>se</th>
<th>CL</th>
<th>Longest S1H2 interval (ms)</th>
<th>Refractory periods of His-Purkinje system (ms)</th>
<th>Refractory periods of ventricular muscle (ms)</th>
<th>HV interval of sinus rhythm (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Relative Effective Functional</td>
<td>Effective Functional</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----</td>
<td>---------------------------</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C A</td>
<td>C A</td>
<td>C A</td>
</tr>
<tr>
<td>-----</td>
<td>----</td>
<td>---------------------------</td>
<td>------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>670</td>
<td>220</td>
<td>250</td>
<td>340</td>
<td>360</td>
<td>300</td>
</tr>
<tr>
<td>800</td>
<td>260</td>
<td>305</td>
<td>380</td>
<td>400</td>
<td>310</td>
</tr>
<tr>
<td>600</td>
<td>205</td>
<td>250</td>
<td>330</td>
<td>360</td>
<td>270</td>
</tr>
<tr>
<td>600</td>
<td>200</td>
<td>200</td>
<td>300</td>
<td>320</td>
<td>300</td>
</tr>
<tr>
<td>600</td>
<td>195</td>
<td>260</td>
<td>290</td>
<td>330</td>
<td><240</td>
</tr>
<tr>
<td>500</td>
<td>200</td>
<td>245</td>
<td>290</td>
<td>310</td>
<td><230</td>
</tr>
<tr>
<td>700</td>
<td>230</td>
<td>270</td>
<td>320</td>
<td>340</td>
<td>270</td>
</tr>
<tr>
<td>700</td>
<td>250</td>
<td>295</td>
<td>320</td>
<td>340</td>
<td>290</td>
</tr>
<tr>
<td>600</td>
<td>220</td>
<td>320</td>
<td>330</td>
<td>360</td>
<td><275</td>
</tr>
<tr>
<td>700</td>
<td>150</td>
<td>170</td>
<td>290</td>
<td>320</td>
<td><270</td>
</tr>
<tr>
<td>550</td>
<td>165</td>
<td>200</td>
<td>300</td>
<td>340</td>
<td><275</td>
</tr>
</tbody>
</table>

(sD) ±32.8 ±38.3 ±27.6 ±25.7 ±13.7 ±24.8 ±44 ±54.5 <0.001 <0.005 <0.001 <0.001 <0.001 ±22.8 ±28.3 ±7.1 ±9.8

<0.001 cycle length.
Fig. 1 Case 9: High right atrial (HRA) and His bundle electrograms (HBE) showing retrograde conduction and refractoriness of the His-Purkinje system in (a–c) control study and (d–f) after treatment with amiodarone. Ventriculoatrial conduction is present during the control study. In (a) a ventricular extrasystole, S_2, introduced at an S_1S_2 interval of 330 ms is conducted retrogradely with an S_2H_2 interval of 150 ms and an H_2A_2 interval of 50 ms. As the S_1S_2 interval is shortened, a progressive increase in S_2H_2 interval occurs (b) up to the onset of effective refractory period of ventricular muscle, which is reached at an S_1S_2 interval of 270 ms (c). In (b) bundle branch re-entry, V_3 is preceded by an H_2V_3 interval of 60 ms. The longest S_2H_2 interval during the control study measures 220 ms (b). After treatment with amiodarone there is a dissociation between the atria and the ventricles during the basic drive. As shown in (d), the H_2 deflection emerges from the V_3 electrogram at a longer S_1S_2 interval than in the control study and the resulting S_2H_2 interval measures 285 ms. In (e), at an S_1S_2 interval of 330 ms, which is comparable to (a) of the control study, the S_2H_2 interval is 320 ms, which is more than twice the control value. At this coupling interval, V_3 occurs and is preceded by a longer H_2V_3 interval than in the control study. The effective refractory period of ventricular muscle is reached at an S_1S_2 interval of 320 ms (f). Also note the lengthening of the HV interval of sinus complexes after amiodarone (c) and (f). CL, cycle length; T, time lines.
Amiodarone and His-Purkinje system conduction

![Graph of His-Purkinje conduction time vs Coupling intervals S1S2 (ms)]

Fig. 2 Case 8: effect of amiodarone on retrograde His-Purkinje conduction times of the premature ventricular complexes. In the control study, H2 emerged from the ventricular electrogram (V2) at an S2S2 interval of 320 ms. At shorter S1S2 intervals the S2H2 intervals progressively increased and a zone of S2H2 block (gap) occurred between S1S2 intervals of 290 and 280 ms. After amiodarone, H2 emerged from V2 at an S1S2 interval of 330 ms and the zone of S2H2 block became wider and occurred between S1S2 intervals of 300 and 280 ms. Effective refractory period of ventricular muscle was reached at an S1S2 interval of 230 ms in the control study and of 250 ms after amiodarone. ○, control values; △, values after amiodarone; ♦, effective refractory period of ventricular muscle.

Linear increase in S2H2 interval until the effective refractory period of the ventricular muscle or that of the His-Purkinje system was reached (Figs. 1 and 2). At longer S1S2 intervals latency could not be identified, but at shorter coupling intervals encroaching on the effective refractory period of ventricular muscle latency ranging from 5–25 ms in the control studies and 10–35 ms after amiodarone was observed in all patients. Thus at shorter S1S2 intervals, V2H2 intervals were shorter than the S2H2 intervals. After amiodarone, the H2 deflection emerged from the ventricular electrogram of the extrasystole at a longer S1S2 interval than the control value, and, at comparable S1S2 intervals, the S2H2 intervals were longer than the control values (Figs. 1 and 2). Compared with the control values, the longest S1H2 intervals after amiodarone were longer in 10 patients and the same in one.

HV INTERVAL

After amiodarone the HV interval was prolonged in seven patients and unchanged in four (Fig. 3). The mean HV interval was significantly longer after amiodarone (Table).

S2H2 BLOCK (GAP) ZONES

S2H2 block is a form of retrograde gap within the His-Purkinje system in which the extrasystole S2 is blocked between the site of stimulation and that where the His bundle recording is made.17 S2H2 block zones ranging from 10–40 ms were observed in six patients during the control study. After amiodarone, S2H2 block zones were not abolished in any patient, became wider or increased in number in three patients (Fig. 2), and appeared in four additional patients.

RE-ENTRY WITHIN THE HIS-PURKINJE SYSTEM

In the control study, re-entry within the His-Purkinje system (V3 phenomenon)17 was observed in five patients, and the zone of re-entry varied from 10 to 50 ms (Fig. 1). After amiodarone, the V3 phenomenon was abolished in three patients and occurred over a narrower zone in two. In both of these patients re-entry was initiated at a longer coupling interval and required considerably longer conduction (S3H2) delay (Fig. 1). After amiodarone re-entry occurred in two
additional patients who did not show re-entry in the control study.

REFRACTORY PERIODS OF THE HIS-PURKINJE SYSTEM
Amiodarone significantly prolonged the relative, effective, and functional refractory periods of the His-Purkinje system (Table). Fig. 4 shows the effect on functional refractory period of the His-Purkinje system before and after amiodarone for all patients. Both the effective and the functional refractory periods of ventricular muscle increased significantly after amiodarone in all patients (Table).

VENTRICULAR TACHYCARDIA
Sustained ventricular tachycardia could be induced in 10 patients in the control study and in four after amiodarone. The rate of induced ventricular tachycardia was slower in all four patients after amiodarone. During a mean follow up period of 14.6 months tachycardia did not recur in nine of 10 patients with ventricular tachycardia. In one patient without inducible tachycardia amiodarone was withdrawn because the drug failed to control spontaneous tachycardia.

Discussion
Our results show that amiodarone prolongs the con-
duction time of the extrasystoles regardless of its effect on the HV interval of sinus complexes. In our study, amiodarone prolonged the S_2H_2 interval at comparable S_1S_2 intervals in all patients and the longest S_2H_2 interval in 10 of 11 patients. Similarly, the functional refractory period of the His-Purkinje system was prolonged in all patients.

The S_2H_2 interval represents the total conduction delay encountered by the ventricular extrasystole during its propagation from the site of stimulation to the site of His bundle recording. Data from experimental studies show that conduction delay and block can occur within the ventricular muscle, muscle-Purkinje junction, and the Purkinje bundle branch system. Since the conduction delays at each of these sites cannot be measured with the techniques used in our study what portion of the S_2H_2 interval reflects the conduction time in the His-Purkinje system cannot be defined. Although the duration of latency increased in all patients after amiodarone, prolongation of the HV and the longest S_2H_2 intervals and the widening of S_2H_2 block zones in many of these patients suggest that the slowing of conduction in the His-Purkinje system contributed to S_2H_2 prolongation. Our observation that amiodarone prolongs the S_2H_2 interval both in patients with and without HV interval prolongation is consistent with the results of in vitro studies.

The reasons for the absence of HV interval prolongation in some clinical studies and its presence in only some patients in most other studies including ours are not known, but possible explanations include variability of patient selection, doses used, and duration of treatment. Another possible explanation for the variable effects of amiodarone on the HV interval may be the presence or absence of disease in the His-Purkinje system. Rosenbaum et al reported exacerbation of pre-existing right bundle branch block during long term treatment with amiodarone. In our study, nine of 11 patients had organic heart disease.

Very few data are available regarding the effect of long term treatment with amiodarone on refractoriness of the His-Purkinje system, and there are conflicting data on the effect of intravenous amiodarone. Touboul et al studied the effect of 5 mg/kg of intravenous amiodarone and reported that the drug prolonged the relative refractory period of the His-Purkinje system in five of seven patients. In contrast, Cabasson et al, using larger doses of amiodarone, found no change in the refractory periods of the His-Purkinje system. In the present study, the functional and relative refractory periods of the His-Purkinje system were prolonged in all patients, and the S_2H_2 block zones became wider and occurred in more patients. On average, the functional
Amiodarone and His-Purkinje system conduction

refractory period of the His-Purkinje system increased by 72 ms, which was 14% higher than the control value. The prolongation of conduction and refractoriness of the His-Purkinje system observed in this study cannot be attributed to time dependent changes because spontaneous variability would be expected to produce both increases and decreases in control data.

Our observations are in agreement with previously reported findings\(^9\)\(^1\)\(^1\)\(^1\) that there is a dissociation between the ability to induce tachycardia in the laboratory and the clinical response to amiodarone. In the present study of a small number of patients the clinical outcome of treatment could not be correlated with the observed changes in the electrophysiological properties of the His-Purkinje system and the ventricular myocardium. A better understanding of the mechanism of the antiarrhythmic action of amiodarone must await further study.

This study was supported in part by a grant from the American Heart Association, Kentucky Affiliate, USA, and was presented at the 32nd Annual Scientific Sessions of the American College of Cardiology, New Orleans, LA, March 1983.

References