Detrimental effects of verapamil in patients with primary pulmonary hypertension

MILTON PACKER, NORMA MEDINA, MADELINE YUSHAK, ISAAC WIENER

From the Division of Cardiology, Department of Medicine, Mount Sinai School of Medicine of the City University of New York, New York, USA

SUMMARY Calcium channel blockade provides a logical approach to the treatment of pulmonary hypertension because these drugs exert direct vasodilator effects in the highly constricted pulmonary circulation. To determine the effectiveness of verapamil in the treatment of primary pulmonary hypertension the haemodynamic effects of the drug were evaluated in seven patients with this disorder; 10 mg was given intravenously to six patients and 120 mg orally to one patient. Verapamil produced a 20% decline in pulmonary vascular resistance and a 27% decrease in mean pulmonary arterial pressure without significant changes in systemic vascular resistance. One patient who received verapamil 480 mg orally daily for three months showed sustained haemodynamic and clinical improvement. Concomitant with its beneficial effects on the pulmonary circulation, however, verapamil produced a pronounced decrease in right ventricular stroke work index (42%) and increase in right ventricular filling pressure (50%), indicating a direct depressant effect of the drug on right ventricular function. In one patient these cardiodepressant effects were sufficiently pronounced to produce severe hypotension and cardiac arrest.

In conclusion, although verapamil appears to exert preferential vasodilator effects on the pulmonary circulation, its negative inotropic effects may be particularly detrimental to patients with primary pulmonary hypertension who have pre-existing right ventricular dysfunction; hence, treatment with verapamil is not recommended in such cases.

Because pulmonary vasoconstriction has been thought to play an important contributory role in the pathophysiology of primary pulmonary hypertension, several vasodilator drugs have been used in patients with this disorder in an attempt to reduce pulmonary artery pressure and pulmonary vascular resistance. Although occasionally haemodynamic and clinical benefit have followed treatment with various vasodilator agents, there remains no satisfactory pharmacological approach to the management of these patients. The major limitation to presently available drugs is that most agents have potent systemic vasodilator effects that exceed the magnitude of their effects on the pulmonary circulation; these systemic effects may result in severe hypotension before any appreciable improvement in pulmonary haemodynamic indices occurs.

Requests for reprints to Dr Milton Packer, Division of Cardiology, Mount Sinai Medical Center, 1 Gustave Levy Place, New York, New York 10029, USA.

Accepted for publication 1 March 1984
Verapamil for pulmonary hypertension

ness in hypoxic or primary pulmonary hypertension.27 The therapeutic application of verapamil in the treatment of abnormal pulmonary vasoconstriction has theoretical appeal since the drug exerts less pronounced effects on the systemic circulation than does nifedipine11 and thus may produce less hypotension than do drugs that have pronounced systemic vasodilator actions.

In the present study we evaluated the haemodynamic and clinical responses to verapamil in seven patients with primary pulmonary hypertension, one of whom was treated with the drug for three months and underwent repeat haemodynamic evaluation.

Patients and methods

STUDY POPULATION

We studied seven patients with primary pulmonary hypertension (five women, two men; age range 28–64 (mean 48) years). The diagnosis was established in all patients by right heart catheterisation, which confirmed the pronounced increase in pulmonary artery pressures (mean pulmonary artery pressure >30 mm Hg) and a normal pulmonary capillary wedge pressure (<15 mm Hg). Gated equilibrium scintigraphy showed normal left ventricular function and moderately to severely impaired right ventricular function. All patients has normal ventilation-perfusion scans and normal pulmonary function tests; the diagnosis was confirmed by pulmonary angiography or open lung biopsy or both. All patients had dyspnoea and fatigue on minimal or moderate exertion, but their condition was clinically stable at the time of evaluation.

HAEMODYNAMIC MEASUREMENTS

After all medications had been withheld for at least 12 hours right heart catheterisation was performed with a triple lumen, flow directed catheter for measuring right heart pressures, and cannulation of the radial artery used for measuring systemic arterial pressures. Haemodynamic measurements were made with the zero reference level at the midaxillary line with the patient supine. Left ventricular filling pressure was measured as the mean pulmonary capillary wedge pressure. Cardiac output was determined by the thermodilution method with a bedside cardiac output computer after injection of iced saline solution. Heart rates were derived from a continuously recorded electrocardiogram. All patients were breathing room air throughout the study.

DRUG ADMINISTRATION

Before drug administration mean systemic arterial pressure, heart rate, mean pulmonary capillary wedge pressure, mean right atrial pressure, and cardiac output were measured repeatedly (with a variation of <10%) until a stable haemodynamic state was achieved. Six patients then received 5 mg of verapamil intravenously followed by a additional 5 mg intravenously 10 minutes later; haemodynamic indices were measured every five minutes for 30 minutes after drug administration. One patient received a single dose of 120 mg of verapamil orally, after which haemodynamic indices were measured every 30 minutes for three hours.

After completion of the intravenous study, long term treatment with oral verapamil (480 mg daily) was started in one patient, who underwent repeat haemodynamic evaluation after three months; at that time, the haemodynamic effects of verapamil were assessed at peak drug effect, and 48 hours after drug withdrawal. This patient received no other medications during this period.

DATA ANALYSIS

Mean systemic and pulmonary artery pressures were determined by electronic filtration. Derived haemodynamic variables were calculated according to the following formulae: cardiac index (CI) = CO/body surface area (/min/m²); stroke volume index (SVI) = CI/HR (ml/beat/m²); RV stroke work index (RVSWI) = SVI×0.0136×(MPAPMRAP) (g m/m²); systemic vascular resistance (SVR) = 80×(MAPMRAP)/CO (dyn cm⁻⁵); and pulmonary vascular resistance (PVR) = 80×(MPAPPCW)/CO (dyn cm⁻⁵), where CO is cardiac output, HR heart rate, MAP mean systemic arterial pressure, PCW pulmonary capillary wedge pressure, MPAP mean pulmonary artery pressure, MRAP mean right atrial pressure, and RV right ventricular.

The responses to verapamil at peak drug effect were compared with control values by the t test for paired data. Group data were expressed as mean (1 SD).

Results

HAEMODYNAMIC EFFECTS

The individual haemodynamic responses to verapamil in the seven patients with primary pulmonary hypertension are shown in Table 1. Verapamil produced a decrease in pulmonary vascular resistance in each patient in our study (range 10–32%); overall, mean pulmonary vascular resistance declined from 1344 to 1078 dyn s cm⁻⁵ (p<0.025). In contrast, the small decrease in systemic vascular resistance after verapamil (1619 to 1469 dyn s cm⁻⁵) was not significant, and the decline in pulmonary vascular resistance exceeded the changes seen in the systemic circulation in all but one patient.
Table 1 Individual haemodynamic responses to verapamil in patients with primary pulmonary hypertension

<table>
<thead>
<tr>
<th>Haemodynamic index</th>
<th>Case Nos</th>
<th>Mean (SD)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Mean arterial pressure (mm Hg)</td>
<td>Control</td>
<td>82</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>Verapamil</td>
<td>69</td>
<td>109</td>
</tr>
<tr>
<td>Heart rate (beats/min)</td>
<td>Control</td>
<td>104</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Verapamil</td>
<td>100</td>
<td>89</td>
</tr>
<tr>
<td>Mean pulmonary artery pressure (mm Hg)</td>
<td>Control</td>
<td>60</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Verapamil</td>
<td>38</td>
<td>56</td>
</tr>
<tr>
<td>Pulmonary capillary wedge pressure (mm Hg)</td>
<td>Control</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Verapamil</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>Mean right atrial pressure (mm Hg)</td>
<td>Control</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Verapamil</td>
<td>23</td>
<td>18</td>
</tr>
<tr>
<td>Cardiac index (l/min/m²)</td>
<td>Control</td>
<td>2.05</td>
<td>2.80</td>
</tr>
<tr>
<td></td>
<td>Verapamil</td>
<td>1.23</td>
<td>2.77</td>
</tr>
<tr>
<td>Stroke volume index (ml/beat/m²)</td>
<td>Control</td>
<td>19.7</td>
<td>35.4</td>
</tr>
<tr>
<td></td>
<td>Verapamil</td>
<td>12.3</td>
<td>31.1</td>
</tr>
<tr>
<td>Pulmonary vascular resistance (dyn s cm⁻¹)</td>
<td>Control</td>
<td>1194</td>
<td>728</td>
</tr>
<tr>
<td></td>
<td>Verapamil</td>
<td>939</td>
<td>658</td>
</tr>
<tr>
<td>Systemic vascular resistance (dyn s cm⁻¹)</td>
<td>Control</td>
<td>1623</td>
<td>1479</td>
</tr>
<tr>
<td></td>
<td>Verapamil</td>
<td>1728</td>
<td>1361</td>
</tr>
<tr>
<td>Right ventricular stroke work index (g m/m²)</td>
<td>Control</td>
<td>13.4</td>
<td>22.6</td>
</tr>
<tr>
<td></td>
<td>Verapamil</td>
<td>2.5</td>
<td>16.1</td>
</tr>
</tbody>
</table>

The fall in pulmonary vascular resistance after verapamil resulted primarily from a pronoucd decrease in mean pulmonary artery pressure with the drug (63.3 to 46.1 mm Hg, p<0.05) since there was little overall change in cardiac index. Part of the lack of improvement in cardiac index occurred because heart rate decreased substantially in some patients (>10 beats/min in three patients), but the overall fall in heart rate (-7 beats/min) was not significant, and thus, there were no overall changes in stroke volume index (24.4 to 23.7 ml/beat/m²). Verapamil produced a significant increase in mean right atrial pressure (11.4 to 17.1 mm Hg, p<0.01), however, and a decrease in right ventricular stroke work index (16.3 to 9.5 g m/m², p<0.01).

Although there were no overall changes in cardiac index, two patients had a pronounced decrease in cardiac index after verapamil (-0.82 and -0.58 l/min/m²), and these two patients also showed the most pronounced changes in mean pulmonary artery pressure (-22 and -55 mm Hg), mean right atrial pressure (+13 and +7 mm Hg), and right ventricular stroke work index (-10.9 and -15.4 g m/m² respectively) seen in our seven patients.

Additional haemodynamic effects after verapamil administration included a moderate decrease in mean arterial pressure (85.1 to 72.6 mm Hg, p<0.01) and a small increase in pulmonary capillary wedge pressure (7.6 to 9.7 mm Hg, p<0.05).

CLINICAL EFFECTS

Four patients tolerated intravenous verapamil well without adverse effects, but three patients experienced unfavourable clinical reactions. One patient had severe dyspnoea immediately after verapamil administration while systemic oxygen saturation decreased from 85 to 79%, and she improved after receiving supplemental oxygen treatment. The one patient who showed a decrease in systemic vascular resistance that exceeded the fall in pulmonary vascular resistance experienced chest pain and dyspnoea as mean arterial pressure declined to 50 mm Hg; these effects were short lived, and the patient improved without specific treatment. In one of the two patients who had a pronounced decrease in cardiac index and right ventricular stroke work index intravenous verapamil administration rapidly produced hypotension, loss of consciousness, and cardiac arrest; the patient improved rapidly with cardiac compression and intravenous noradrenaline and calcium chloride administration.

One patient was treated with oral verapamil 120 mg four times daily for three months (Table 2). After 48 hours verapamil produced a 26% increase in stroke volume index, a 36% decrease in mean pulmonary artery pressure, and a 37% decrease in pulmonary vascular resistance, compared with pretreatment values, with minimal change in systemic arterial pressure or systemic vascular resistance. After three months’
Verapamil for pulmonary hypertension

Table 2 Short and long term haemodynamic effects of verapamil in a patient with primary pulmonary hypertension treated for three months

<table>
<thead>
<tr>
<th>Haemodynamic index</th>
<th>Control values</th>
<th>After verapamil (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean arterial pressure (mm Hg)</td>
<td>79</td>
<td>73</td>
</tr>
<tr>
<td>(first dose)</td>
<td>73</td>
<td>79</td>
</tr>
<tr>
<td>Heart rate (beats/min)</td>
<td>103</td>
<td>89</td>
</tr>
<tr>
<td>Mean pulmonary artery pressure (mm Hg)</td>
<td>50</td>
<td>42</td>
</tr>
<tr>
<td>Pulmonary capillary wedge pressure (mm Hg)</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Mean right atrial pressure (mm Hg)</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Cardiac index (/min/m²)</td>
<td>2.14</td>
<td>1.90</td>
</tr>
<tr>
<td>Stroke volume index (ml/best/m²)</td>
<td>20.8</td>
<td>21.3</td>
</tr>
<tr>
<td>Pulmonary vascular resistance (dyn s cm⁻³)</td>
<td>1067</td>
<td>950</td>
</tr>
<tr>
<td>Systemic vascular resistance (dyn s cm⁻³)</td>
<td>1667</td>
<td>1700</td>
</tr>
</tbody>
</table>

120 orally for 48 h | 480/day for 48 h | 480/day for 3 m | 48 h after withdrawal
79 | 85 | 99 | 59 | 9 | 3 | 3 | 2.14 | 21.6 | 1248 | 1827

In treatment, the patient's dyspnoea and fatigue had moderately improved, and exercise duration on a bicycle ergometer (150 kpm/min (24-5 W) for three minutes followed by increments of 150 kpm/min (24-5 W) every three minutes until exhaustion) increased from 6-3 to 7-8 minutes. Repeat haemodynamic evaluation after three months' treatment and again 48 hours after withdrawal of verapamil showed sustained effects of the drug with decreases in mean pulmonary artery pressure and pulmonary vascular resistance similar to those during the start of treatment; however, there was evidence of mild progression of the underlying pulmonary vascular disease during the course of follow up.

Discussion

Calcium channel blockade provides a logical approach to the treatment of patients with pulmonary hypertension. In so far as vasoconstriction plays an important role in these patients and appears to be critically dependent on intracellular calcium,4 10 11 calcium channel antagonism may serve to ameliorate the haemodynamic abnormalities and produce clinical benefits. This approach is of particular interest since calcium channel blocking drugs appear selectively to dilate constricted vessels6 16 and may exert preferential effects on the pulmonary circulation.10 Nifedipine attenuates hypoxic pulmonary vasoconstriction experimentally and clinically,17-19 and preliminary results with both short and long term treatment in patients with primary pulmonary hypertension have been highly favourable.20-24 Nevertheless, nifedipine exerts potent systemic vasodilator effects in addition to those in the pulmonary circulation,1 4 and this could lead to severe hypotension if the diseased pulmonary vascular bed is not responsive to calcium channel blockade. In addition, nifedipine may activate the sympathetic nervous system,28 which may exacerbate the pulmonary hypertension by increasing venous return to the right heart and by increasing right ventricular contractility.29-30

Lastly, long term nifedipine treatment may be accompanied by peripheral oedema31; such fluid retention may confuse the clinical picture of right heart failure, which so commonly complicates the course of chronic pulmonary hypertension.

Verapamil may provide a therapeutic alternative to nifedipine for the management of pulmonary hypertension. Compared with nifedipine the drug appears to exert less pronounced effects on systemic vascular resistance,11 neutralises the reflex increase in sympathetic tone resulting from systemic vasodilatation,28 and rarely produces peripheral oedema.13 In a similar way to nifedipine, verapamil attenuates acute hypoxic pulmonary vasoconstriction in experimental studies18-22 26 and may lessen the magnitude of secondary right ventricular hypertrophy after chronic hypoxia.32-33 There are, however, few reports of the use of verapamil in hypoxic pulmonary hypertension in man. Furthermore, preliminary work by Landmark and colleagues27 with verapamil in nine patients with primary pulmonary hypertension has largely been unfavourable. These investigators found that the injection of 0-15 mg/kg of verapamil directly into the pulmonary artery produced only small decreases in pulmonary artery pressure and no change in pulmonary vascular resistance or cardiac output. Although an occasional patient showed notable pulmonary vasodilatation, others had pronounced decreases in cardiac output and right ventricular stroke work, one of whom had severe dyspnoea and hypotension after drug administration. Because of the lack of appreciable pulmonary vasodilator effects, Landmark et al doubted that long term verapamil treatment would be beneficial in patients with primary pulmonary hypertension.

Our results in seven patients with primary pulmonary hypertension extend the findings of Landmark et al. In contrast to these earlier observations,27 we found that verapamil produced significant decreases in pulmonary vascular resistance that exceeded those in systemic resistance; these favourable pulmonary vasodilator effects were accompanied by pronounced...
decreases in mean pulmonary artery pressure. Long
term treatment with oral verapamil in one patient
produced notable haemodynamic and symptomatic
improvement that was sustained for three months.
Unfortunately, despite these benefits, cardiac index
failed to increase in most of our patients despite the
decrease in resistance to right ventricular systolic ejec-
tion because verapamil treatment was accompanied by
decreases in right ventricular stroke work and
increases in right ventricular filling pressure; these
haemodynamic responses indicated that the drug
exerted a direct negative inotropic effect on right ven-
tricular function, independent of its pulmonary
vasodilator action. This is consistent with the known
cardiodepressant effects of verapamil that result from
its ability to block transmembrane calcium transport
in the myocardium.34,35 Although such negative
inotropic effects are usually offset by the drug’s ability
to reduce ventricular afterload,28 this neutralisation
does not appear to be sufficient in patients with com-
promised ventricular function, who are particularly
sensitive to verapamil’s negative inotropic action;33
this may be especially true if the degree of pulmonary
vasodilatation is limited by obliterator pulmonary
vascular disease.8 Hence, in our patients with a
severely reduced right ventricular ejection fraction
due to chronic pressure overload, right ventricular
performance deteriorated after verapamil treatment.

Two of the seven patients showed pronounced car-
diodepressant effects, one of whom experienced car-
diogenic shock and arrest, which required the
intravenous administration of pressors and calcium
chloride to restore circulatory homeostasis. Although
the clinical importance of the negative inotropic
effects of verapamil in patients with pre-existing left
ventricular dysfunction is well established,35 this is
the first report to document the potential dangers of
verapamil in patients with underlying right ventricu-
lar failure.

Two other patients experienced adverse reactions
with intravenous verapamil that were not related to
the drug’s negative inotropic action. One patient, who
showed pronounced systemic vasodilator effects but
minimal effects on the pulmonary circulation, experi-
enced severe hypotension associated with chest pain
and dyspnoea after receiving verapamil. Another
patient had severe dyspnoea associated with a pro-
nounced decrease in systemic oxygen saturation (to
79%). Both reactions have been seen with other vaso-
dilator drugs in patients with pulmonary hyperten-
sion8,19 and appear to be secondary to the pronounced
systemic vasodilator effects that may occasionally
accompany treatment (and produce hypotension) and
to the dilatation of transpulmonary shunts (which
may produce hypoxaemia).7,8

In conclusion, despite its preferential vasodilator
effects on the pulmonary circulation, we do not
recommend verapamil for treating patients with
primary pulmonary hypertension. Although an occa-
sional patient’s condition may improve during short
and long term treatment with the drug, most patients
will experience major depressant effects on right ven-
tricular performance, and this may have serious cardio-
vascular consequences. Calcium channel blockade
may be a useful approach to the management of pri-
mary pulmonary hypertension, but its application
requires the development of a drug with selective
pulmonary vasodilator effects and without appreci-
able negative inotropic action. Since verapamil may
be given to patients with chronic pulmonary hyper-
tension for the treatment of atrial tachycardias (in
patients with severe mitral stenosis) or for the treat-
ment of exertional angina (in patients with chronic
obstructive lung disease), we advise caution with its
use in any patient with severe right ventricular dys-
function.

MP is the recipient of a Young Investigator’s
Research Award from the National Heart, Lung and
Blood Institute, Bethesda, Maryland, USA.

References
1 Dresdale DT, Michtom RJ, Schultz M. Recent studies in
primary pulmonary hypertension including phar-
macodynamic observations on pulmonary vascular resis-
2 Wagenvoort CA, Wagenvoort N. Primary pulmonary
hypertension. A pathologic study of the lung vessels in
156 clinically diagnosed cases. \textit{Calculation} 1970; 42:
1163–84.
3 Reeves JT, Noonan JA. Microarteriographic studies of
primary pulmonary hypertension. \textit{Arch Pathol} 1973; 95:
50–5.
4 Rich S, Martinez J, Lam W, Levy PS, Rosen KM. Reas-
essment of the effects of vasodilator drugs in primary
pulmonary hypertension: guidelines for determining a
pulmonary vasodilator response. \textit{Am Heart J} 1983; 105:
119–27.
5 Shettigar UR, Hultgren HN, Specter M, Martin R,
Davies DH. Primary pulmonary hypertension: favorable
6 Klinke WP, Gilbert JAL. Diazoxide in primary pulmo-
7 Rubin LJ, Peter RH. Oral hydralazine therapy for pri-
mary pulmonary hypertension. \textit{N Engl J Med} 1980; 302:
69–73.
8 Packer M, Greenberg B, Massie B, Dash H. Deleterious
effects of hydralazine in patients with pulmonary hyper-
9 Rubino JM, Schroeder JS. Diazoxide in treatment of
primary pulmonary hypertension. \textit{Br Heart J} 1979; 42:
362–3.
10 Fleckenstein A. Specific pharmacology of calcium in
myocardium, cardiac pacemakers, and vascular smooth

Packer, Medina, Yushak, Wiener

Fleckenstein A. Specific pharmacology of calcium in
myocardium, cardiac pacemakers, and vascular smooth

\textit{Packer, Medina, Yushak, Wiener}

10.1136/hrt.52.1.106
Verapamil for pulmonary hypertension