Efficacy of an implanted automatic defibrillator which had induced atrial fibrillation

L JORDAENS, R HAMERLYNCK, D L CLEMENT
From the Departments of Cardiology and Cardiovascular Surgery, State University Ghent, Belgium

SUMMARY A 54 year old man with refractory life threatening ventricular tachycardia was given an automatic defibrillator. The initial system was a transvenous defibrillator coil electrode and this was later modified by implantation of two patch electrodes at thoracotomy.

The modified system successfully controlled ventricular tachycardia. On one occasion reversion of ventricular tachycardia by the defibrillator precipitated atrial fibrillation, a previously unreported side effect.

Internal defibrillators have been introduced to treat refractory and repeated ventricular tachycardia or fibrillation. We describe a patient in whom cardiac arrest was caused by ventricular fibrillation. A defibrillator was implanted four years after myocardial infarction.

Case report

In 1979, when he was 50, this man had had an inferoposterior myocardial infarction which was complicated with late ventricular tachycardia and cerebral embolism. Treatment with disopyramide was started and this was later changed to amiodarone (400 mg/day) on the basis of Holter tape recordings which consistently showed frequent ventricular extrasystoles and couplets. He did not have angina pectoris or signs of left ventricular heart failure.

On 17 September 1983 he suddenly collapsed and cardiopulmonary resuscitation was carried out by bystanders. When the rescue team arrived ventricular fibrillation was detected and defibrillation was performed with 300 J.

At examination blood pressure was 160/110 mm Hg. A pansystolic murmur of grade II/VI intensity was recorded in the fourth intercostal space at the left sternal border. This had been present before the cardiac arrest. An electrocardiogram showed prominent depression of the J point with a horizontal ST segment in the precordial leads. The electrocardiogram subsequently showed sinus rhythm of 72 beats per minute with an axis in the frontal plane of

Requests for reprints to Dr L. Jordaens, Akademisch Ziekenhuis, De Pintelaan 185, B-9000 Ghent, Belgium.
tachycardia and it was still possible to induce ventricular tachycardia or fibrillation with the original stimulation protocol when the patient was on beta blockers or tocainide. After three weeks loading with oral amiodarone, ventricular fibrillation could still be easily induced by double stimuli on a paced rhythm of 90 beats per minute, and this situation was unchanged when amiodarone was given in combination with oral mexiletine. When amiodarone was given in combination with procainamide induction of fibrillation was slightly more difficult and double stimuli given on a basic rhythm of 110 beats per minute produced a hypotensive ventricular tachycardia of 150 beats per minute. Hence, the patient was started on oral procainamide (1·5 g three times a day) in combination with amiodarone (600 mg). This regimen was not considered to be effective because Holter tracings showed multiform ventricular premature beats and the patient had gastrointestinal symptoms and a productive cough.

On 11 April 1984 an automatic implantable defibrillator (AID-B®) (Intec Systems, Pittsburgh, USA) was implanted under general anaesthesia. A bipolar electrode was passed through the left cephalic vein and placed in the right ventricular apex. The amplitude of the R wave was 12 mV. The Seldinger technique was used to place a classic defibrillator coil in the superior caval vein and a subxiphoid incision was made preparatory to positioning of a defibrillation patch.

Ventricular tachycardia with a cycle length of 320 ms could be induced with programmed electrical stimulation and could be stopped repeatedly with 5 J delivered through an external device (Fig. 1). In an attempt to induce ventricular fibrillation with programmed stimulation, however, ventricular tachycardia was induced by a burst of stimulation and when 20 J was delivered by the external cardioverter-defibrillator through the coil and patch the tachycardia rate was increased. A further shock of 30 J stopped the tachycardia. External cardioversion was needed to terminate ventricular fibrillation.

Anterolateral left thoracotomy was carried out so that a large defibrillation patch and a small defibrillation patch could be positioned in the pericardial space. The defibrillation threshold for ventricular fibrillation was <20J. With the impulse generator in the abdominal pouch, fibrillation was produced by application of an alternating current. After a charge time of 8-2 s, a first shock of 25·5 J was given after another 14 seconds. A third shock was needed to convert the ventricular fibrillation to sinus rhythm.

While the patient was still in hospital, an episode of ventricular tachycardia with loss of consciousness

Fig. 1 Efficacy of defibrillator during monomorphous ventricular tachycardia. At implantation monomorphous tachycardia (cycle length 340 ms) was interrupted by a 5 J shock between a coil in the superior caval vein and a patch in the pericardial space (SCV-P). Ventricular fibrillation, however, was not terminated by 35 J shock. RV, bipolar electrode in right ventricle. Paper speed was 25 mm/s.
was terminated by the first shock. Termination of a recurrence required two internal shocks.

The patient was discharged in excellent condition, without antiarrhythmic drugs. Because we feared that the threshold of the defibrillator for ventricular fibrillation might be too high, a control electrophysiological study was performed on 25 May. Ventricular monomorphic tachycardia with cycle length of 330 ms was induced by double stimuli on a basic paced rhythm of 110 beats per minute. It was instantaneously detected and corrected by the first shock.

When a second episode of ventricular tachycardia terminated spontaneously a shock was given 290 ms after the P wave, and this produced long lasting atrial fibrillation and a ventricular rate of 100 beats per minute (Fig. 2). Ventricular fibrillation was produced by application of alternating current (50 Hz) for 2 s and the first shock of 25.5 J converted both rhythms to sinus rhythm. The patient was discharged after 24 hours. He is back at work.

Discussion

Ventricular fibrillation causes most sudden deaths from heart disease. The speed with which ventricular fibrillation can be terminated by defibrillation seems to be an important factor in determining the success of cardiopulmonary resuscitation, and an automatic implantable device that detects and corrects ventricular fibrillation immediately will be of considerable benefit in high risk patients. Such a device has been developed and implanted in more than 250 patients.

The clinical results are good, with a 25% decline in mortality at one year. These results were obtained in patients with older units and before the use of two patches or larger patches had been considered. The 12 month survival rate in patients fitted with defibrillators is reported to be as high as 97.2% from ventricular tachycardia or fibrillation; it is 83.4% from all types of cardiovascular disease. These results show that implantable defibrillators are better than other forms of treatment for refractory ventricular rhythm disturbances.

Much research has been done on the ideal positioning and size of the paddles and on the amount and character of the energy delivered to the myocardium. These studies led to the concept of a defibrillation threshold—that is the application of an appropriate amount of energy to the myocardium for a critical time. The sensing and defibrillation thresholds must be adjusted during implantation of the device. This influences the surgical technique and is relevant to previous and intended operations.

If no other cardiovascular surgery is performed at the time of implantation, it is possible to insert the apical electrode through a small subxiphoid incision, as was our intention. This case report, however, confirms that some patients may show a high defibrillation threshold during the operation, or may even go into ventricular fibrillation when defibrillatory shocks are given. The conversion rate with the original spring patch defibrillator for mono-

Fig. 2 Electrophysiological study after implantation of defibrillator. The induced regular ventricular tachycardia terminated spontaneously but was sensed (arrow at point of detection) by the defibrillator before sinus rhythm returned. An internal shock given 290 ms after the P wave resulted in atrial fibrillation, as shown by the deviation of the atrioventricular junction (AVJ) electrocardiogram. Lower tracing shows aortic pressure (mm Hg). Paper speed was 25 mm/s.
morphous ventricular tachycardia is 77–86%, but
the conversion rate is higher for polymorphous ven-
tricular tachycardia and fibrillation when the size of
the shock delivered to the myocardium is increased.7
About 10% of patients require two patches to pro-
duce a sufficiently low energy threshold.7 In these
cases access through a subxiphoid incision is not ade-
quate. Treatment of our patient with amiodarone
can explain the high defibrillation threshold at oper-
ation.9

Acceleration of ventricular tachycardia with
occurrence of fibrillation is a potential risk of all
cardioversion systems, but this effect is less frequent
with these devices than with burst pacing.10 Our
case report shows that currently available defibrillators are capable of delivering a rescue shock
because they can generate up to three more shocks
after the initial shock.3

Control studies should be performed after
implantation when it has not been possible to estab-
lish the efficacy or the correct sensing of clinical or
induced arrhythmias during the implantation of the
defibrillator, or when doubts about efficacy remain.
We proposed a control study to our patient because
cardioversion of ventricular fibrillation during
implantation required three shocks, and two con-
secutive shocks were needed to convert clinical ven-
tricular tachycardia to sinus rhythm. He might have
required a high energy device. During the electro-
physiological study correct sensing of both ventricu-
lar tachycardia and ventricular fibrillation were
proved while the patient was under short general
anaesthesia. We also found that when the device's
 capacitors were charged and the arrhythmia stopped
spontaneously a shock was given when sinus rhythm
returned. Synchronous shocks given during sinus
tachycardia, supraventricular tachycardia, or atrial
fibrillation are not known to have caused ventricular
tachycardia or fibrillation.3 In our patient such a
shock caused atrial fibrillation. It is clear, however,
that because of synchronisation to ventricular
rhythm during tachycardia the shock will often be
dissociated from the atrial activity so that short last-
ing atrial arrhythmias may occur.3 The device has
not been developed to treat atrial flutter or
fibrillation, but these rhythm disturbances may trig-
ger the defibrillator, and there is reversion to sinus
rhythm in 50% of such episodes.11

References
1 Josephson ME, Horowitz LN, Spielman SR, Green-
span AM. Electrophysiologic and hemodynamic stud-
ies in patients resuscitated from cardiac arrest. Am J
2 Eisenberg MS, Copass MK, Hallstrom AP, et al.
Treatment of out-of-hospital cardiac arrests with rapid
defibrillation by emergency medical technicians.
3 Mirowski M, Reid PR, Winkle RA, et al. Mortality in
patients with implanted automatic defibrillators. Ann
4 Reid PR, Mower MM, Griffith SC, et al. Comparative
effects on mortality of the first and second generation
implantable defibrillators [Abstract]. Circulation 1984;
70 (suppl II): 101.
5 Mirowski M, Reid PR, Mower MM, et al. Clinical
performance of the implantable cardioverter-
6 Schuder JC, Rahmoeller GA, Stoeckle H. Trans-
 thoracic ventricular defibrillation with triangular and
7 Winkle RA, Stinson EB, Bach SM Jr, Echt DS, Oyer
P, Amstrong MA. Measurement of cardioversion/
defibrillation thresholds in man by a truncated
exponential waveform and an apical patch-superior
vena caval spring electrode configuration. Circulation
Implantation of the automatic defibrillator: the sub-
9 Fogoros RN. Amiodarone-induced refractoriness to
ventricular fibrillation. Ann Intern Med 1984; 100:
699–700.
10 Waspe LE, Kim SG, Matos JA, Fisher JD. Role of
a catheter lead system for transvenous countershock and
pacing during electrophysiologic tests: an assessment of
the usefulness of catheter shocks for terminating ven-
tricular tachyarrhythmias. Am J Cardiol 1983; 52:
477–84.
11 Reid PR, Mower MM, Mirowski M, et al. Correction
of atrial tachyarrhythmias with the automatic
implantable cardioverter-defibrillator [Abstract].