Ventricular arrhythmias in long term survivors of orthotopic and heterotopic cardiac transplantation

DIMITRIOS ALEXOPOULOS,*† SALIM YUSUF,*‡ JULIAN BOSTOCK,† JIM A JOHNSTON,* PETER SLEIGHT,* MAGDI H YACOUB†

From †Harefield Hospital, Harefield, Middlesex and the *John Radcliffe Hospital, Oxford

SUMMARY Fourteen long term survivors with orthotopic (recipient heart replaced by donor heart) and nine with heterotopic cardiac transplants (recipient heart retained) had 24 hour ambulatory electrocardiographic monitoring to detect ventricular arrhythmias. Arrhythmia was uncommon in the patients with orthotopic transplants; none of them had more than one extrasystole per hour. In the patients with heterotopic cardiac transplants the recipient’s own heart showed significantly more frequent ventricular arrhythmias than the corresponding donor heart: abnormal complexes (mean/24 h) 4583 vs 42.7; extrasystoles 1772 vs 17.8; pairs 121 vs 0.8. There was no relation between the abnormal ventricular activity of the two hearts in the patients with heterotopic transplants on a beat by beat, hourly, or 24 hour basis. There was no consistent diurnal variation in the frequency of the abnormal ventricular beats after cardiac transplantation. The occurrence of ventricular arrhythmia was unrelated to the interval from operation to the study.

In long term survivors of cardiac transplantation the denervated heart shows a little ventricular ectopic activity even when compared with normal hearts. In patients with heterotopic transplants ventricular arrhythmias commonly occur in the recipient’s own heart; these are probably related to the underlying severity of the original disease.

Patients and methods

Fourteen men with orthotopic (mean (SD) age 45 (8) years) and nine patients with heterotopic (eight men and one woman, age 42 (10) years) cardiac transplants were studied by ambulatory 24 hour electrocardiographic monitoring. Donor hearts were obtained from individuals aged 22 (7) years. The surgical techniques are described elsewhere. The interval from operation to the study varied from six to 42 months (mean 20) in the orthotopic and from seven to 18 months (mean 11) in the heterotopic transplantation group. Most of the patients were taking a mixture of drugs (cyclosporin, azathioprine, prednisolone, aspirin, dipryidamole, and diuretic) but no patient was on an antiarrhythmic drug. All patients were symptom free, ambulant, and performing their
Ventricular arrhythmias in long term survivors of orthotopic and heterotopic cardiac transplantation

Arrhythmica used in families, that (Oxford, ston, system following RR conduction tricular a usual daily activities. Each patient kept a detailed diary of activity and symptoms. The most recent biopsy specimen was normal in 21 patients but two patients showed evidence of mild rejection.

Electrocardiographic recording
Ambulatory 24 hour electrocardiograms were recorded on Oxford Medilog II recorders with two channels. The skin was carefully prepared and electrodes were placed to record modified lead V1 and V4 in patients with orthotopic transplants. In patients with heterotopic transplants a modified V4R lead was recorded instead of V1 to permit better separation of the two QRS complexes. Because the donor heart lay to the right of the recipient heart its QRS complex was clearly delineated in V4R whereas in lead V4 the QRS complex of the recipient’s own heart was dominant. Figure 1 shows a typical electrocardiographic trace from a patient with a heterotopic cardiac transplant.

Arrhythmia analysis
We used a computerised template system (J John- ston, Oxford), based on a QRS pattern recognition that could classify QRS complexes into different families, to analyse the ventricular arrhythmias. The system consisted of a Z80A pre-processor and a DEC LSI-11 master. The normal QRS complex was defined by the operator and recognised by the system thereafter. Any unrecognised QRS complex was screened carefully by the operator and if its shape indicated a ventricular origin or abnormal ventricular conduction it was classified and subsequently recognised as an “abnormal complex”. We used the following definitions: extrasystole, an abnormal complex with a coupling interval less than 80% of the previous RR interval; pair, two consecutive abnormal complexes; run, three or more abnormal com-
plexes with a rate less than 120 per minute; ventricular tachycardia, three or more ventricular extrasystoles with a rate greater than 120 per minute. Figure 2 shows an example of ventricular extrasystoles from the donor and the recipient heart of a patient with a heterotopic transplant.

Every electrocardiographic tape from the group with heterotopic transplants was analysed twice and the dominant QRS complex on each channel was identified separately. In the heterotopic transplant group we attempted to correlate the frequency of the abnormal complexes and ventricular extrasystoles in the two hearts during the whole 24 hour period and also on an hourly basis. In addition, we attempted to study the possible temporal relation between individual extrasystoles in the two hearts.

The times of waking up and sleeping were noted and the mean rates of abnormal complexes and extrasystoles during sleep and wakefulness were calculated in both groups.

Finally, in both groups we examined the severity of arrhythmia and the interval since operation to see whether there was a correlation.

Statistical analysis
All data are expressed as mean values (1 SD). We used the paired or unpaired Student's t test and the non-parametric Wilcoxon test as appropriate.

Results

Clinical characteristics
Not surprisingly, the donor hearts were obtained from individuals who were younger than the recipients (p < 0.001). The ages of the donors and recipients.

Accepted for publication March 1988.

Figure 1. Typical electrocardiographic trace from 24 hour Holter monitoring of a patient with a heterotopic cardiac transplant. Channel 1: donor’s (d) and recipient’s (r) QRS complexes are clearly distinguishable. Channel 2: recipient’s (r) QRS complex is dominant.

Figure 2. Electrocardiographic trace of a patient with heterotopic cardiac transplantation with extrasystoles from both hearts. Channel 1: donor’s (d) QRS complex is dominant. Channel 2: recipient’s (r) QRS complex is dominant. d’ and d”, extrasystoles from donor’s heart. r’ and r”, extrasystoles from recipient’s heart.
the recipients in the orthotopic and heterotopic transplant groups were not significantly different. The mean interval from operation to the study was longer in the orthotopic group than the heterotopic transplantation group (p < 0.02).

No symptoms were reported by patients during the 24 hour study period.

ARRHYTHMIAS

Tables 1 and 2 shows the number of the “abnormal complexes”, extrasystoles, pairs, and runs in the two groups of patients. Ventricular tachycardia was not seen in any patient. Nine (39%) out of the 23 denervated hearts had no abnormal ventricular activity at all and in rest such activity was infrequent. This low occurrence of ventricular arrhythmia was similar in the donor hearts of both groups. We saw many abnormal complexes and extrasystoles in the recipient hearts of those patients with heterotopic transplants.

Analysis of the arrhythmia frequency in those with heterotopic transplants on a 24 hour or hourly basis showed no relation between the two hearts. The occurrence of an extrasystole in the one heart did not correlate with the presence of an extrasystole in the other heart.

Table 3 shows the frequency of abnormal complexes per hour during sleep and waking. Abnormal complexes were less common during sleep in four donor and two recipient hearts in the nine patients with heterotopic transplants. In the orthotopic group three of the eight patients with abnormal ventricular activity showed a decline in the frequency during sleep. The occurrence of extrasystoles during the 24 hour period was also reduced during sleep.

Finally, the occurrence of abnormal complexes or ventricular extrasystoles was unrelated to the time since operation in both the orthotopic and heterotopic groups.

<table>
<thead>
<tr>
<th>No</th>
<th>Abnormal complexes</th>
<th>Extrasystoles</th>
<th>Pairs</th>
<th>Runs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>20</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>11</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>37</td>
<td>115</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mean</td>
<td>42.7</td>
<td>17.8</td>
<td>0.8</td>
<td></td>
</tr>
</tbody>
</table>

Compared with the donor heart: *p < 0.05. †p < 0.01.
Ventricular arrhythmias were uncommon in the denervated transplanted heart; they were no more common than in normal individuals. Only one denervated heart in this series showed more than a hundred extrasystoles in 24 hours; again this is probably within normal limits. The infrequent occurrence of ventricular arrhythmias during continuous ambulatory electrocardiographic monitoring in patients after orthotopic cardiac transplantation accords with previous studies, although in these patients arrhythmias were less vigorously measured.

Several factors may be implicated in the arrhythmogenesis after cardiac transplantation. Supersensitivity to circulating catecholamines, rejection episodes, and accelerated atherosclerosis could favour the production of arrhythmia in the donor heart. But the low frequency of extrasystoles implies that such factors have a limited role. In the innervated hearts of the heterotopic group severe underlying disease (coronary artery disease, congestive cardiomyopathy) is the most likely cause for the increased numbers of arrhythmias. The lack of correlation between the arrhythmia in the donor and recipient heart underscores the importance of the different aetiological factors causing extrasystoles. In addition, the absence of simultaneous occurrence of arrhythmia indicates either lack of effect of the stimuli common for both hearts, such as hormonal factors and physical activity, or different bases for these stimuli in each heart.

Unlike normal subjects we found no overall reduction in extrasystoles during sleep. Denervation of the donors’ hearts and autonomic dysfunction of the severely diseased recipient’s own hearts might be responsible for the absence of a diurnal variation. It was interesting that some of the denervated donor hearts did show a reduction in extrasystoles during sleep; this probably reflects the lowered plasma catecholamines seen during sleep, with perhaps some added amplification caused by denervation supersensitivity.

Despite the frequent occurrence of extrasystoles in the recipient heart our patients did not report dizziness or palpitations. This presumably reflected the relatively small contribution of the recipient heart to total cardiac output.

Our study is limited by the short duration (24 hours) of electrocardiographic monitoring, since there is a significant day to day variability in the frequency of extrasystoles in patients with innervated hearts; there is no information on such variability after cardiac denervation. The generally low occurrence of arrhythmia suggests that there will be less day to day variation in counts.

In conclusion, ventricular arrhythmias were no more common in donor hearts than in normal individuals. In contrast, the very high occurrence of ventricular extrasystoles in recipient hearts was probably related to their underlying severe disease. There was no evidence of simultaneous arrhythmia in both recipient and donor hearts.

References


6 Stinson EB, Dong E Jr, Iben AB, Shumway NE.
Cardiac transplantation in man. III Surgical aspects. 


