Importance of ancillary properties of β blockers in angina: a study of celiprolol and atenolol

JAMES M McLENACHAN, JOHN T WILSON, HENRY J DARGIE
From the Department of Cardiology, Western Infirmary, Glasgow

SUMMARY Celiprolol (400 mg) and atenolol (100 mg) were given once a day to 16 patients with stable angina pectoris in a double blind placebo controlled crossover study. Celiprolol produced less suppression of heart rate both at rest and during exercise than atenolol. Both drugs were equally effective in reducing the frequency of angina and in delaying the onset of ischaemia during exercise. Radionuclide ventriculography showed that atenolol but not celiprolol lowered cardiac output at rest and during exercise.

Thus the ancillary properties of celiprolol, including partial β₂ agonist activity and direct vasodilating activity, have detectable effects on cardiac function that may be beneficial in patients with angina.

The notable success of β adrenoceptor antagonists in the treatment of myocardial ischaemia in patients with coronary heart disease reflects the fact that effort is the main stimulus to the development of such ischaemia. There are some disadvantages associated with the principal therapeutic action of β blockade, which is suppression of the increase in heart rate and contractility that normally accompanies exercise.¹ These include an increase in left ventricular volume, which is energy wasting, and a reduction in cardiac output during exercise. Thus the interest in β blockers with ancillary properties that confer a more favourable haemodynamic profile while retaining the beneficial effect on myocardial ischaemia.

Celiprolol is a new β₁ selective adrenoceptor antagonist with partial agonist effects at the β₂ receptor and direct vasodilating activity. It is orally active, undergoes minimal hepatic metabolism, and is active for at least 24 hours when given in a dose of 400 mg.²

We compared the effects of a daily dose of celiprolol (400 mg) with that of atenolol (100 mg) on angina frequency, effort capacity, and indices of myocardial ischaemia and function at rest and during dynamic exercise in a double blind randomised crossover study of 16 patients with stable angina pectoris.

Patients and methods

PATIENTS We studied 16 patients (14 men, two women; age range 28–69 years) with stable effort induced angina pectoris. Three had a previous history of myocardial infarction (all Q wave infarcts); none had sustained an infarct within six months of entry to the study. Patients with evidence of heart failure were excluded and the three patients with previous myocardial infarction all had values for resting left ventricular ejection fractions of > 40%. All 16 had angiographically proven coronary artery disease and a positive treadmill exercise test showing horizontal ST segment depression of at least 1 mm during exercise.

STUDY DESIGN All antianginal treatment, except for glyceryl trinitrate, was stopped over a run in period of one week. A single blind placebo period of one week was followed by two double blind treatment periods, each lasting two weeks, during which the patients were treated with atenolol (100 mg) and celiprolol (400 mg) once a day in random order. Assessments were made at the end of the placebo phase (day 7) and at the end of each two week treatment period (days 21 and 35). Exercise testing was carried out approximately six to eight hours after the last oral dose and a recovery period of at least one hour was allowed between the two exercise tests.

Requests for reprints to Dr Henry J Dargie, Department of Cardiology, Western Infirmary, Glasgow G11 6NT.

Accepted for publication 14 December 1987
ASSSESSMENTS
The following assessments were made:
Angina frequency and glyceryl trinitrate consumption
Diary cards were issued together with a supply of glyceryl trinitrate and patients were asked to record episodes of angina and the number of glyceryl trinitrate tablets they took. Angina frequency and consumption of glyceryl trinitrate were analysed for the week before exercise testing in each of the three phases (that is days 0–7, 14–21, and 28–35).

Treadmill exercise testing
Heart rate and blood pressure were recorded before exercise in recumbent and standing patients. Symptom limited exercise testing was then performed with a Marquette CASE II system according to a modified Bruce protocol.

Radionuclide ventriculography
First pass radionuclide ventriculography (technetium-99m) was carried out with a Baird Atomic multi-crystal gammacamera both at rest and during upright bicycle exercise. Patients were exercised to a maximum during the single blind placebo phase and then to that same workload during the two treatment periods. One operator (JTW) did the analysis with standard software. Cardiac output was calculated from the product of heart rate, ejection fraction, and left ventricular end diastolic volume.

Statistical analysis
Results are given as mean (SE). The statistical significance of differences between treatments was measured by Student’s t test for paired data. Appropriate correction was made for multiple comparisons (Bonferroni). Because three comparisons were made for most variables (placebo vs atenolol, placebo vs celiprolol, and atenolol vs celiprolol), significance was assumed at the level of p < 0·02.

Results
ANGINA FREQUENCY
Both atenolol and celiprolol reduced angina frequency significantly more than placebo (table 1); there was no difference between the two active drugs. Glyceryl trinitrate consumption was not significantly reduced by either drug.

Table 1: Angina frequency and consumption of glyceryl trinitrate (GTN) (mean (SE))

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>Atenolol</th>
<th>Celiprolol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anginal episodes per week</td>
<td>10 (2)</td>
<td>5 (1)*</td>
<td>6 (1)*</td>
</tr>
<tr>
<td>GTN consumed per week</td>
<td>8 (2)</td>
<td>5 (2)</td>
<td>6 (1)</td>
</tr>
</tbody>
</table>

*p < 0·02, difference between placebo and drug.

Table 2: Effects of atenolol and celiprolol on treadmill exercise testing (mean (SE))

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>Atenolol</th>
<th>Celiprolol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise time (s)</td>
<td>635 (48)</td>
<td>727 (52)</td>
<td>746 (49)</td>
</tr>
<tr>
<td>Maximum ST depression (mm)</td>
<td>2·4 (0·3)</td>
<td>1·9 (0·3)</td>
<td>2·1 (0·3)</td>
</tr>
<tr>
<td>Time to 1 mm ST depression (min)</td>
<td>7·4 (1·0)</td>
<td>10·2 (1·0)*</td>
<td>9·5 (1·2)*</td>
</tr>
<tr>
<td>Double product (100) at 1 mm ST depression</td>
<td>190 (11)</td>
<td>125 (6)*</td>
<td>151 (8)*</td>
</tr>
</tbody>
</table>

*p < 0·02, t p < 0·005, t p < 0·001, difference between placebo and drug.

EFFECTS ON HEART RATE AND BLOOD PRESSURE
The two active drugs differed markedly in their effects on heart rate and blood pressure. Whereas atenolol reduced resting heart rate by about 25% in both the supine and erect postures (table 2), celiprolol had no significant effect on resting heart rate. Atenolol significantly reduced systolic blood pressure in both lying and standing patients and also reduced diastolic pressure while the patient was standing; celiprolol had less effect on resting blood pressure and significantly reduced only standing diastolic pressure (table 2).

When patients were exercising on the treadmill, both drugs significantly suppressed the tachycardia and the increase in blood pressure that occurred during exercise (figs 1 and 2). For simplicity, only the p values referring to differences between atenolol and celiprolol are shown. When patients were on atenolol, the curve relating heart rate to exercise time generally paralleled the placebo curve, heart rates being approximately 25% lower at each stage of exercise on atenolol. When patients were treated with celiprolol, the curve relating heart rate and exercise time was flatter (fig 1); thus celiprolol had little effect on...
resting heart rate but did suppress heart rate as exercise progressed. Even at peak exercise, however, heart rate was significantly higher on celiprolol than on atenolol (120 (4) beats per minute vs 105 (4) beats per minute, \(p < 0.005 \)).

The rise in systolic pressure on both drugs was lower than that on placebo, but there were no significant differences between the two drugs (fig 2).

EXERCISE CAPACITY AND ELECTROCARDIOGRAPHIC EVIDENCE OF MYOCARDIAL ISCHAEMIA

Mean exercise time on placebo was 635 (48) seconds. Exercise time was prolonged, but not significantly, by celiprolol (746 (49) s, \(p = 0.031 \) vs placebo) and by atenolol (727 (52) s, \(p > 0.10 \)) (table 3). Maximum ST segment depression was not reduced by either drug (table 3), but both significantly delayed the onset of 1 mm ST segment depression; there was no significant difference between atenolol and celiprolol. The double product (heart rate \(\times \) systolic blood pressure) at the onset of 1 mm ST depression was significantly lower on both drugs than on placebo and significantly higher on celiprolol than on atenolol (table 3).

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Effect of atenolol and celiprolol on resting heart rate and blood pressure (mean (SE))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Placebo</td>
</tr>
<tr>
<td>Lying:</td>
<td></td>
</tr>
<tr>
<td>Heart rate (beats/min)</td>
<td>80 (2)</td>
</tr>
<tr>
<td>Systolic BP (mm Hg)</td>
<td>131 (5)</td>
</tr>
<tr>
<td>Diastolic BP (mm Hg)</td>
<td>88 (3)</td>
</tr>
<tr>
<td>Standing:</td>
<td></td>
</tr>
<tr>
<td>Heart rate (beats/min)</td>
<td>87 (3)</td>
</tr>
<tr>
<td>Systolic BP (mm Hg)</td>
<td>125 (5)</td>
</tr>
<tr>
<td>Diastolic BP (mm Hg)</td>
<td>87 (3)</td>
</tr>
</tbody>
</table>

*\(p < 0.01 \), †\(p < 0.001 \), difference between placebo and drug.

To address the question of whether exercise capacity and electrocardiographic evidence of myocardial ischaemia were improved by the drugs, a logarithmic regression analysis was performed. The regression equations were:

- Placebo: \(Y = -0.3X + 0.8 \)
- Celiprolol: \(Y = -0.2X + 1.0 \)
- Atenolol: \(Y = -0.1X + 1.2 \)

Where \(Y \) is the exercise time in seconds and \(X \) is the age in years. The slopes were significantly different for the three groups, with celiprolol having the steepest slope and placebo having the shallowest slope. The intercepts were also significantly different, with placebo having the highest intercept and celiprolol having the lowest intercept. These results indicate that celiprolol had a greater effect on exercise capacity and electrocardiographic evidence of myocardial ischaemia than placebo and atenolol.

Figure 3 shows the cardiac output (l/min) at rest (R) and during exercise (E) for the three treatment periods. Compared with placebo, cardiac output was significantly reduced (\(p < 0.02 \)) both at rest and during exercise by atenolol but not by celiprolol.
The low frequency of side effects may reflect the fact that most of the patients had been treated with, and were tolerant of, \(\beta \) blockers before they joined the study.

Discussion

The major therapeutic action of conventional \(\beta \) blockers in angina pectoris is the suppression of exercise induced tachycardia, which leads to a reduction in myocardial oxygen requirement. \(\beta \) Blockers with intrinsic sympathomimetic activity produce less of a reduction in heart rate at rest and during exercise but may be less effective antianginal agents than \(\beta \) blockers without this property. Figure 1 shows that celiprolol acts like a \(\beta \) blocker with intrinsic sympathomimetic activity; it had little effect on resting heart rate but produced considerable blunting of the exercise induced rise in heart rate. At peak exercise, heart rate and double product were significantly higher on celiprolol than on atenolol, yet both drugs were equally effective at reducing myocardial ischaemia during exercise as shown by electrocardiographic indices. Subjective testing showed that both drugs produced an equal reduction in angina frequency in keeping with previous studies that showed the antianginal efficacy of celiprolol. There were, however, striking differences in their respective haemodynamic profiles, suggesting different mechanisms of action.

The product of heart rate and systolic blood pressure correlates with oxygen consumption. Glyceril trinitrate relieves angina by lowering the rate-pressure product, but if the workload is further increased to raise this product to the baseline level, pain still occurs. The administration of \(\beta \) blockers, however, lowers the rate-pressure product at the onset of ischaemia by about 30% suggesting an adverse effect on myocardial oxygen consumption for the same amount of cardiac work at a given pressure. Table 3 shows that the rate-pressure product achieved for a similar degree of myocardial ischaemia on celiprolol was significantly higher than that on atenolol. The rate-pressure product on both drugs was lower than on placebo. This suggests that the ancillary properties of celiprolol have a beneficial effect on myocardial oxygen balance, either by increasing myocardial oxygen supply or by reducing demand. Several properties of celiprolol may contribute to this effect.

In patients with coronary artery disease drugs with intrinsic sympathomimetic activity produce less of an increase, or even a small fall, in systemic vascular resistance than drugs without such activity. Thus the reduction in diastolic blood pressure on celiprolol might be explained by a fall in systemic vascular resistance whereas the reduction on atenolol probably reflects the fall in cardiac output. In addition, celiprolol seems to have a direct vasodilator action since its vasodilator activity is not abolished by blockade of \(\beta_2 \) agonist effects by propranolol. Thus a reduction in afterload by intrinsic sympathomimetic activity and vasodilator activity might reduce oxygen demand and improve cardiac pumping in patients with ischaemic heart disease. Furthermore, in animal studies celiprolol had a positive inotropic effect that was not due solely to \(\beta_2 \) agonism as this effect also persisted in the presence of propranolol.

Measurement of ejection fraction does not allow us to determine whether an observed rise is caused by increased contractility or to a change in loading conditions. Thus the ability to maintain a higher ejection fraction and cardiac output at a higher heart rate on celiprolol than on atenolol could be explained either by an increase in myocardial contractility or by afterload reduction mediated by both \(\beta_2 \) agonism and direct vasodilator activity. Whether these ancillary actions of celiprolol will be associated with a reduction in side effects of \(\beta \) blockade, particularly fatigue, remains to be seen.

In conclusion, celiprolol is an effective antianginal agent that seems to be well tolerated. It has less effect on heart rate than atenolol and does not reduce cardiac output either at rest or during exercise. These effects are probably related to its ancillary properties including \(\beta_2 \) agonism and direct vasodilator activity, which may be beneficial in ischaemic heart disease.

J M McL was supported by a British Heart Foundation Junior Research Fellowship.

References

Importance of ancillary properties of β blockers in angina: a study of celiprolol and atenolol

