Left ventricular filling characteristics in pulmonary hypertension: a new mode of ventricular interaction

B B Stojnic, S J D Brecker, H B Xiao, S M Helmy, M Mbaissouroum, D G Gibson

Abstract

Objective—To examine the effects of pulmonary hypertension on left ventricular diastolic function and to relate the findings to possible mechanisms of interdependence between the right and left sides of the heart in ventricular disease.

Design—A retrospective and prospective analysis of echocardiographic and Doppler studies.

Setting—A tertiary referral centre for both cardiac and pulmonary disease.

Patients—29 patients with pulmonary hypertension (12 primary pulmonary hypertension, 10 pulmonary fibrosis, five atrial septal defect (ASD), and two scleroderma) were compared with a control group of 10 patients with an enlarged right ventricle but normal pulmonary artery pressure (six ASD, one after ASD closure, one ASD and pulmonary valvotomy, one tricuspid valve endocarditis and repair, and one pulmonary fibrosis). None had clinical or echocardiographic evidence of intrinsic left ventricular disease.

Main Outcome measures—M mode echocardiographic measurements were made of septal thickness, and left and right ventricular internal cavity dimensions. Doppler derived right ventricular to right atrial pressure drop, and time intervals were measured, as were isovolumic relaxation time, and Doppler left ventricular filling characteristics.

Results—The peak right ventricular to right atrial pressure gradient was (mean ±SD) 60 (16) mm Hg in pulmonary hypertensive patients, and 18 (5) mm Hg in controls. The time intervals P2 to the end of the tricuspid regurgitation, and P1 to the start of tricuspid flow were both prolonged in patients with pulmonary hypertension compared with controls (115 (60) and 120 (40) v 40 (15) and 45 (10) ms, p values <0.001). Pulmonary hypertensive patients commonly had a dominant A wave on the transmitral Doppler (23/29); however, all the controls had a dominant E wave. Isovolumic relaxation time of the left ventricle was prolonged in pulmonary hypertensive patients compared with controls, measured as both A, to mitral valve opening (80 (25) v 50 (15) ms) and as A, to the start of mitral flow (105 (30) v 60 (15) ms, p values <0.001). The delay from mitral valve opening to the start of transmitral flow was longer in patients with pulmonary hypertension (30 (15) ms) compared with controls (10 (10) ms, p <0.001). At the time of mitral opening there was a right atrial gradient of 12 (10) mm Hg in pulmonary hypertensive patients, but this was negligible in controls (0.4 (0.3) mm Hg, p <0.001).

Conclusions—Prolonged decline of right ventricular tension, the direct result of severe pulmonary hypertension, may appear as prolonged tricuspid regurgitation. It persists until after mitral valve opening on the left side of the heart, where events during isovolumic relaxation are disorganised, and subsequent filling is impaired. These effects are likely to be mediated through the interventricular septum, and this right-left ventricular asynchrony may represent a hitherto unrecognised mode of ventricular interaction.

The right and left ventricles cannot be considered independently of one another, and there is evidence of interaction in isolated perfused hearts,1 whole animals,2,3 and humans.4,5 Experimental studies and animal models of acute and chronic right ventricular pressure overload have shown that the shape of both ventricles is altered as a result of leftward displacement of the interventricular septum. Also, some echocardiographic studies have shown that patients with right ventricular pressure or volume overload often have impaired left ventricular diastolic function that has been related to the geometrical distortion of the left ventricle.6,7,8 The aim of this study was to show the abnormalities of left ventricular diastolic function present in a group of patients with right ventricular pressure overload secondary to severe pulmonary hypertension, and to compare these with a control group of patients with right ventricular dilatation but normal pulmonary artery pressures. In this way we hoped to study the possibility of right ventricular disease affecting left ventricular diastolic function, and in particular to separate any direct effects of pulmonary hyper-
Aetiology

Age characteristics in Pulmonary fibrosis

Table 1 Characteristics of the study groups

<table>
<thead>
<tr>
<th>Pulmonary hypertension</th>
<th>Right ventricular dilatation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 29)</td>
<td>(n = 10)</td>
</tr>
<tr>
<td>Age (y) (mean (SD))</td>
<td>44 (13)</td>
</tr>
<tr>
<td>Aetiology</td>
<td>42 (18)</td>
</tr>
<tr>
<td>Primary pulmonary hypertension (12)</td>
<td>44 (17-57)</td>
</tr>
<tr>
<td>Pulmonary fibrosis (10)</td>
<td>44 (17-57)</td>
</tr>
<tr>
<td>Atrial septal defect (5)</td>
<td>Tricuspid valve endocarditis and repair (1)</td>
</tr>
<tr>
<td>Scleroderma (2)</td>
<td>Pulmonary fibrosis (1)</td>
</tr>
</tbody>
</table>

tension from those of right ventricular dilatation, septal shift, or left ventricular compression.

Patients and methods

STUDY POPULATION

We studied 29 patients (age (mean (range)) 44 (20-63); 17 women) with pulmonary hypertension (12 primary pulmonary hypertension, 10 pulmonary fibrosis, 5 atrial septal defect (ASD), and 2 scleroderma), and a control group of 10 patients (age (mean (range)) 42 (17-57); 6 women) with right ventricular dilatation (free wall to septal diameter > 2.6 cm at end systole) but normal pulmonary artery pressure (peak right ventricular to right atrial pressure drop < 35 mm Hg). Table 1 shows the composition of each group. All patients were in sinus rhythm and all had holosystolic tricuspid regurgitation detectable on Doppler. The two patients with scleroderma had no features to suggest involvement of the left ventricle, and there was no hypertrophy of the free wall. No clinical or echocardiographic signs of intrinsic left ventricular disease were found in any other patients. The patients were young and none had symptoms suggestive of coronary artery disease; in the absence of clear clinical indications coronary angiography was not performed.

M MODE AND CROSS SECTIONAL ECHOCARDIOGRAPHY

M mode and cross sectional echocardiograms were taken with the patient in the standard left lateral position, using an Advanced Technical Laboratory Imager Mk 300I with a 3-0 MHz mechanical transducer, or a Toshiba SSH 160A with a 3-5 MHz transducer. Phonocardiograms were recorded from a Leatham microphone with a low frequency filter. M mode echocardiograms were recorded with simultaneous electrocardiogram and phonocardiogram on a Honeywell (Ecoline 22) strip chart recorder at a paper speed of 10 cm/s. Aortic valve closure (A2) was taken as the start of the first high frequency vibration of the aortic component of the second heart sound recorded on the phonocardiogram, and was checked for validity with the aortic echogram and the aortic closure artefact on the Doppler recordings. Left ventricular internal cavity dimensions, septal and posterior wall thickness were measured with leading edge methodology, from the parasternal long axis view at end systole (at A2) and end diastole (start of the QRS complex on the electrocardiogram). The right ventricle was measured from end diastolic frames of the apical four chamber view. The short axis was measured transversely at the tip of the tricuspid valve leaflets. Isovolumic relaxation time for the left ventricle was measured from A2 to the initial separation of the mitral cusps on the M mode echogram. Interventricular septal motion was analysed from M mode echocardiograms taken at the level of the tips of the mitral leaflets. All measurements were made on three cardiac cycles and the mean was taken.

DOPPLER ECHOCARDIOGRAPHY

We recorded Doppler signals on a Doptek Spectrascan with a 2-0 MHz transducer, and a Toshiba SSH 160A with a 3-5 MHz transducer. Peak transmitral and transtricuspid flow velocities were identified by continuous wave from the apex and were recorded in pulsed mode with a 3 mm gate and 250 Hz wall filter. The peak velocities of early "E wave" and atrial "A wave" transmirtal flow were recorded and the ratio E/A was derived. Tricuspid regurgitant flow was identified and recorded in continuous mode from the apex. The peak instantaneous systolic pressure drop from right ventricle to right atrium was calculated with the modified Bernoulli equation from the peak velocity of the tricuspid regurgitant signal, and the pressure drop at the instant of mitral cusp separation was also recorded. The RR interval was measured from the electrocardiogram, recorded simultaneously with the phonocardiogram. A second measurement of isovolumic relaxation time was obtained for the left ventricle from A2 to the start of mitral flow. The first high frequency vibration of the second component of the second heart sound was taken as P2 and this was checked on the pulmonary echogram and pulmonary closure artefact on Doppler recordings. The time interval from pulmonary closure (P2) to the start of tricuspid flow was recorded in all cases. All measurements were made on three cardiac cycles and the mean taken. Intracavity flow was detected within the left ventricle with pulsed Doppler aligned along the ventricular inflow. Having identified flow in pulsed mode, it was recorded in colour Doppler superimposed upon a long axis M mode of the left ventricular cavity from the mitral ring to the apex.

STATISTICAL ANALYSIS

All values are given as mean (SD). Differences between mean values were compared by Student's t test, and those in incidence by Fisher's exact probability test.

Results

Tables 2 and 3 show mean values of the measurements. No significant differences were found between the ages or heart rates of pulmonary hypertensive patients and controls.

M MODE AND DOPPLER MEASUREMENTS

Dimensions and septal motion

The internal cavity dimensions of the left ventricle were equally reduced (by the enlarged right ventricle) in both groups of patients, although the septal thickness was greater in
patients with pulmonary hypertension than in controls (1.24 (0.2) v 0.9 (0.1) cm, p < 0.001). In 20 of 29 (69%) patients with pulmonary hypertension, early diastolic posterior displacement of the septum was evident on M mode recordings, during isovolumic relaxation of the left ventricle (fig 1). This was not seen, however, in any patients of the control group (20/29 v 0/10, p < 0.0001). There were no significant differences in the peak systolic right ventricular to right atrial gradient or left ventricular filling pattern between those patients with and without diastolic posterior displacement of the septum.

Dynamics of tricuspid regurgitation and time intervals

By definition, the peak right ventricular to right atrial pressure gradient was higher in pulmonary hypertensive patients than in controls (60 (16) v 18 (5) mm Hg). Tricuspid regurgitation was prolonged in pulmonary hypertensive patients, persisting a mean of 75 ms after opening of the mitral valve, compared with only 20 ms in controls. Not only did this reduce the time available for forward tricuspid flow (240 (100) ms in pulmonary hypertensive patients v 360 (110) ms in controls, p = 0.012) but, when correlated with events on the left side of the heart, led to a tricuspid pressure drop (ventricular to atrial) of 12 (10) mm Hg still persisting at the time of opening of the mitral valve (compared with 0.4 (0.3) mm Hg in controls, p < 0.001) (figs 1 and 2). This occurred in spite of isovolumic relaxation time of the left ventricle being longer in pulmonary hypertensive patients than controls, whether measured from A2 to opening of the mitral valve (80 (25) v 50 (15) ms) or from A2 to the start of mitral flow on Doppler (105 (30) v 60 (15) ms, p < 0.001). Similarly, the time from pulmonary closure to the start of tricuspid flow on Doppler was prolonged in pulmonary hypertensive patients compared with controls (120 (40) v 45 (10) ms, p < 0.001). Further significant delay occurred in the start of mitral flow with respect to mitral cusp separation in pulmonary hypertensive patients compared with controls (30 (15) v 10 (10) ms, p < 0.001).

Filling patterns

On the transmitral Doppler 23/29 (79%) of the patients with pulmonary hypertension had a dominant “A” wave (23/29 “A fillers”). This pattern of filling was not found in any of the control group, who were all “E fillers”; the difference in incidence was highly significant (p < 0.0001). We found no significant difference in heart rate between the two groups of patients. Within the group with pulmonary hypertension, “A fillers” had a longer isovolumic relaxation time than the “E fillers” (100 (25) v 60 (20) ms, p < 0.001).

Intracavity flow

In six patients with pulmonary hypertension, intracavity flow was noted during isovolumic relaxation. All six patients showed posterior displacement of the interventricular septum after aortic closure. Compared with the group as a whole, no significant differences occurred in duration of isovolumic relaxation, ventricular filling times, or filling pattern in patients with intracavity flow.

Discussion

In common with previous studies, we have found impaired left ventricular diastolic function in our patients with pulmonary hyperten-

Table 2
M mode measurements of dimensions of the left and right ventricles (mean (SD))

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pulmonary hypertension (n = 29)</th>
<th>Right ventricular dilatation (n = 10)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left ventricular end diastolic dimension (cm)</td>
<td>3.5 (0.8)</td>
<td>3.8 (0.4)</td>
<td>NS</td>
</tr>
<tr>
<td>Left ventricular end systolic dimension (cm)</td>
<td>2.3 (0.5)</td>
<td>2.3 (0.4)</td>
<td>NS</td>
</tr>
<tr>
<td>Septal thickness at Q wave (cm)</td>
<td>1.2 (0.2)</td>
<td>0.9 (0.1)</td>
<td>0.001</td>
</tr>
<tr>
<td>Posterior wall thickness (cm)</td>
<td>0.8 (0.5)</td>
<td>0.8 (0.1)</td>
<td>NS</td>
</tr>
<tr>
<td>Right ventricular dimension (short axis) (cm)</td>
<td>2.6 (0.5)</td>
<td>2.9 (0.6)</td>
<td>NS</td>
</tr>
<tr>
<td>Posterior septal displacement after A2 (n)</td>
<td>20</td>
<td>0</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Table 3
Doppler and M mode characteristics (mean (SD))

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pulmonary hypertension (n = 29)</th>
<th>Right ventricular dilatation (n = 10)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR interval (ms)</td>
<td>660 (250)</td>
<td>750 (130)</td>
<td>NS</td>
</tr>
<tr>
<td>RV-RA pressure drop (mm Hg)</td>
<td>60 (16)</td>
<td>18 (5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Left ventricular isovolumic relaxation time (ms):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2-MVO</td>
<td>80 (25)</td>
<td>50 (15)</td>
<td><0.001</td>
</tr>
<tr>
<td>A2-MV flow</td>
<td>105 (30)</td>
<td>60 (15)</td>
<td><0.001</td>
</tr>
<tr>
<td>P2-TV flow (ms)</td>
<td>120 (40)</td>
<td>45 (10)</td>
<td><0.001</td>
</tr>
<tr>
<td>A2-end of TR (ms)</td>
<td>155 (60)</td>
<td>70 (15)</td>
<td><0.001</td>
</tr>
<tr>
<td>P2-end of TR (ms)</td>
<td>115 (60)</td>
<td>40 (15)</td>
<td><0.001</td>
</tr>
<tr>
<td>RV-RA pressure drop at MVO (mm Hg)</td>
<td>12 (10)</td>
<td>0.4 (0.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>Mural filling velocity:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E (m/s)</td>
<td>0.3 (0.2)</td>
<td>0.6 (0.3)</td>
<td><0.002</td>
</tr>
<tr>
<td>A (m/s)</td>
<td>0.55 (0.2)</td>
<td>0.4 (0.1)</td>
<td><0.002</td>
</tr>
<tr>
<td>E/A ratio</td>
<td>0.5 (0.4)</td>
<td>1.8 (0.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Delay in onset of mitral flow (MVO-MV flow) (ms)</td>
<td>30 (15)</td>
<td>10 (10)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

RV, right ventricle; RA, right atrium; MVO, mitral valve opening; MV, mitral valve; TV, tricuspid valve; TR, tricuspid regurgitation.
Left ventricular filling characteristics in pulmonary hypertension: a new mode of ventricular interaction

As well as confirming well recognised disturbances of ventricular filling with reduced early diastolic and increased atrial velocities, we also found that isovolumic relaxation was abnormal. The interval from aortic closure to mitral cusp separation was significantly increased, and a further abnormal delay occurred between cusp separation and the earliest start of detectable transmural flow by pulsed Doppler. Also, ventricular dimension characteristically fell during isovolumic relaxation, indicating a change in cavity shape, and in six patients, intracavity flow was detected.

Several mechanisms have been proposed to explain how right sided abnormalities can disturb left ventricular diastolic function in the absence of left ventricular diastolic disease. Distension or hypertension of the right ventricle may compress the left, thus altering chamber stiffness. Raised diastolic pressures from the right may directly affect those of the left, possibly by moving the septum, or the interaction may be indirect and involve the pericardium. In our study we aimed to investigate these possibilities in more detail.

The characteristic disturbances of isovolumic relaxation that we saw in our patients suggest that whatever the mode of interaction between the two ventricles it was already operating before mitral valve opening. This makes it unlikely that the primary disturbance was simply one of passive ventricular pressure and volume relations. Neither did pericardial restraint appear to be important as this is also a late diastolic phenomenon and it is difficult to see how such restraint could possibly affect isovolumic relaxation. Our patients all showed the characteristic anatomical findings of right ventricular dilatation with corresponding compression of the left ventricle, often with reversed septal motion. To investigate this possible mechanism we used a control group of patients with identical anatomical abnormalities, but in whom right ventricular systolic pressures were normal. Left ventricular diastolic function was effectively normal in this group. We concluded, therefore, that disturbed left ventricular diastolic function in our patients with pulmonary hypertension could not be attributed to reduced right ventricular diastolic compliance, pericardial interaction, left ventricular compression, or any other direct result of right ventricular dilatation, but seemed to be much more closely related to the presence of the pulmonary hypertension itself. Not only is peak pulmonary artery pressure raised in patients with pulmonary hypertension, but the rate of fall is reduced, so the pressure pulse lasts longer. This may show itself in several ways. The interval from pulmonary valve closure to tricuspid opening is increased, and the duration of the Doppler signal of functional tricuspid regurgitation is strikingly prolonged so that it may persist 100 ms or more after P. These findings are so consistent that they can be used to estimate peak pressure in the right ventricle in individual patients. Effectively, therefore, pulmonary hypertension causes decline of right ventricular tension to be prolonged; with tricuspid regurgitation as a marker, this prolongation beyond pulmonary closure is considerable, being on average 3 ms for every 1 mm Hg rise in pressure in the right ventricle. In our present study we were particularly concerned to examine the effects on left sided events. We found that tricuspid regurgitation consistently continued beyond open-
ing of the mitral valve, and that at the time of
mitrail cusp separation a mean gradient of
12 mm Hg from right ventricle to right atrium
still existed. Thus tension in the right ventricle
continues to decline throughout, and beyond
isovolumic relaxation of the left ventricle. It is
likely that tension within the interventricular
septum is equally prolonged. This would
explain the displacement of the posterior sep-
tum and associated fall in the dimension of the
left ventricle seen in the patients with pulmon-
ary hypertension but not in the controls. This
septal shift will have contributed to the inco-
ordinate wall motion seen during isovolumic
relaxation, and thus to delaying the opening of
the mitral valve and the start of filling as well as
to the abnormal intracavitary flow.

The period of isovolumic relaxation is
critical to normal filling. Prolonged or dis-
organised isovolumic relaxation has important
consequences on function later in diastole,
reducing early velocity diastolic filling and
causing a corresponding increase in velocity
during atrial systole. This effect has been shown
in hypertrophic cardiomyopathy,1,5 coronary
artery disease,1,6 and left ventricular hyper-
trophy due to aortic stenosis.1,8 We suggest that
our findings represent yet another example of
the interaction between isovolumic relaxation
and ventricular filling, and as the disturbances
in filling of the left ventricle were so typical of
those previously described, we think that no
other explanation for them need be sought.

Even within our group of patients with pul-
monary hypertension, "A fillers" had a sig-
nificantly longer isovolumic relaxation time
than "E fillers." The effects of a diastolic
pressure gradient across the septum on ventr-
cicular septal motion have been recognised for
some time, both in whole animals,2 and humans
with pulmonary hypertension,6 but such
grades have been associated with raised right
ventricular diastolic pressure due to disturbed
compliance and thus occur during ventricular
filling; hence they are different in their mechan-
ism and timing to those we have described.
Similarly, left ventricular asynchrony has been
recognised in pulmonary hypertension,11 but
again this was only apparent during filling and
events during isovolumic periods were
specifically excluded from this study. That a
pressure gradient across the septum may dis-
organise isovolumic relaxation and thus disturb
filling does not appear to have been previously
proposed.

This study highlights a potential problem of
nomenclature that will become increasingly
important once it is recognised that systole and
diastole need not be synchronous on the two
sides of the heart. In our patients decline of
right ventricular tension during late systole
corresponded to early left ventricular diastole
and this asynchrony had important practical
consequences. It, in fact, represents a novel
mode of ventricular interaction that has
received little attention, and it also provides
further evidence of the importance of
isovolumic relaxation of the left ventricle in
determining events for the remainder of
diastole.

S J D B is supported by a British Heart Foundation junior
research fellowship and H B X by the Brompton Hospital
Special Cardiac Fund.

1 Weber KT, Janicki JS, Shroff S, Fishman AP. Contractile
mechanics and interaction of the right and left ventricles.
2 Kingma IK, Tyberg JV, Smith ER. Effects of diastolic
transseptal pressure gradient on ventricular septal
3 Vinser MS, Arentzen CE, Crumbley III AJ, Larson EV,
O'Conner MJ, Anderson RW. The effects of pressure-
duced right ventricular hypertrophy on left ventricular
diastolic properties and dynamic geometry in the con-
4 Goldstein JA, Harada A, Yagi Y, Barzilai B, Cox JL.
Hemodynamic importance of systolic ventricular inter-
action, augmented right atrial contractility and atro-
ventricular synchrony in acute right ventricular
5 Jessup M, St John Sutton M, Weber KT, Janicki JS. The
effect of chronic pulmonary hypertension on left ven-
tricular site, function and interventricular septal motion.
Am Heart J 1987;113:1114-22.
6 Tanaka H, Tsuboi C, Nakao S, Tabara M, Sakurai S, Kashima
T, Kaneshia T. Diastolic bulging of the interventricular
septum toward the left ventricle: An echocardiographic
manifestation of negative interventricular pressure
gradient between left and right ventricles during diastole.
7 Ryan T, Petrovic O, Dillon JC, Feigenbaum H, Conley MJ,
Armstrong WF. An echocardiographic index for separa-
tion of right ventricular volume and pressure overload. J
8 Louie EK, Rich S, Brundage BH. Doppler echocardio-
graphic assessment of impaired left ventricular filling in
patients with right ventricular pressure overload due to
primary pulmonary hypertension. J Am Coll Cardiol
1986;8:1298-306.
9 Ditterich HG, Chow LC, Nicod PH. Early improvement in
left ventricular diastolic function after relief of chronic
right ventricular pressure overload. Circulation 1989;
80:283-30.
10 Bhargava V, Sunnerhagen KS. Left ventricular asynchrony
in patients with pulmonary hypertension. J Appl Physiol
11 Triffon D, Groves BM, Reeves JT, Ditchey RV. Determin-
ants of the relation between systolic pressure and duration
of isovolumic relaxation in the right ventricle. J Am Coll
12 Burstin L. Determination of pressure in the pulmonary
artery by external graphic recordings. Br Heart J 1967;29:
396-404.
13 Haste L, Angelsen BAJ, Tromsodal A. Non-invasive estima-
tion of pulmonary artery systolic pressure with Doppler
14 Stevenson JG, Kawabori I, Guntheroth WG. Noninvasive
estimation of peak pulmonary artery pressure by M-mode
15 Brecker SJ, Xiao HB, Stojnic BB, Mbaissouroum M,
Gibson DG. Assessment of the peak tricuspid regurgitant
velocity from the dynamics of retrograde flow. Int J
16 Sanderson JE, Gibson DG, Brown DJ, Goodwin JF. Left
ventricular filling in hypertrophic cardiomyopathy. An
17 Fioretti P, Brower RW, Meester GT, Serruys PW. Inter-
action of left ventricular relaxation and filling during early
diastole in human subjects. Am J Cardiol 1980;46:
197-203.
18 Lee CH, Hogan JC, Gibson DG. Diastolic disease in left
ventricular hypertrophy: comparison of M mode and
Doppler echocardiography for the assessment of rapid