Abnormalities in the biosynthesis of thromboxane A₂ and prostacyclin in children with cyanotic congenital heart disease

Ian Adatia, Susan E Barrow, Paula Stratton, James M Ritter, Sheila G Haworth

Abstract
Background—Children with cyanotic congenital heart disease and pulmonary outflow tract obstruction have shortened platelet survival times and are susceptible to thrombosis and organ infarction. Thromboxane A₂ and prostacyclin have opposing actions on platelet aggregability and an imbalance in their biosynthesis might contribute to the pathophysiology of these complications.

Methods—Biosynthesis of thromboxane A₂ and prostacyclin was investigated in 16 children (4–32 months, median 18 months) with cyanotic congenital heart disease and pulmonary outflow tract obstruction and compared with 16 healthy children of a similar age (6–34 months, median 24 months). Urinary excretion of 2,3-dinor-thromboxane B₂ (a metabolite of thromboxane A₂) and of 2,3-dinor-6-oxo-prostaglandin F₁α (a metabolite of prostacyclin) was measured.

Results—The children with cyanotic congenital heart disease and pulmonary outflow tract obstruction excreted more 2,3-dinor-thromboxane B₂ than the healthy children: 916(163) compared with 592(122) ng/g creatinine (mean(SEM); 2p = 0.014). The ratio of excretion of 2,3-dinor-thromboxane B₂ to 2,3-dinor-prostaglandin F₁α was greater in the patients than in the healthy control group (2.38(0.28) v 1.30(0.22)) (2p = 0.002).

Conclusion—The imbalance between biosynthesis of prostacyclin and of thromboxane A₂ is abnormal in children with cyanotic congenital heart disease and pulmonary outflow tract obstruction and favours platelet aggregation and vaso-constriction.

Patients and methods
We studied 16 children (aged 4–32 months, median 18 months) with cyanotic congenital heart disease caused by right ventricular outflow tract obstruction (table). All children had abnormal echocardiographic features and had one or more of the following complications: ventricular septal defect, atrial septal defect, pulmonary stenosis, patent ductus arteriosus, or tetralogy of Fallot.

Children with cyanotic congenital heart disease and a low pulmonary blood flow owing to right ventricular outflow tract obstruction may have structurally abnormal hypoplastic pulmonary vessels, decreased platelet survival times, and rheological abnormalities rendering them susceptible to thrombosis and organ infarction. Thromboxane A₂ (a vasoconstrictor and promoter of platelet aggregation) and prostacyclin (a vasodilator and inhibitor of platelet aggregation) are derivatives of arachidonic acid metabolism. An imbalance between the biosynthesis of thromboxane and the biosynthesis of prostacyclin has been implicated in several vascular disorders and might contribute to the pathophysiology of the complications of cyanotic congenital heart disease with an inadequate pulmonary blood flow. The association of a reduced flow and activated platelets could lead to a disordered interaction between the endothelium and platelets.

A non-invasive approach to studying thromboxane and prostacyclin biosynthesis in vivo is to measure excretion of the metabolites 2,3-dinor-thromboxane B₁ and 2,3-dinor-6-oxo-prostaglandin F₁α. These metabolites reflect extrarenal systemic biosynthesis of thromboxane A₂ and prostacyclin respectively. This method avoids the problem of artefactual stimulation of eicosanoid biosynthesis that can occur as a result of endothelial trauma and platelet activation during blood sampling. We therefore studied eicosanoid biosynthesis in children with cyanotic congenital heart disease and pulmonary outflow tract obstruction by measuring the 12-hour urinary excretion of 2,3-dinor-thromboxane B₁ and 2,3-dinor-6-oxo-prostaglandin F₁α.

Department of Clinical Pharmacology, United Medical Schools of Guy’s and St Thomas’ Hospitals, Guy’s Hospital Campus, London S E Barrow P Stratton J M Ritter Correspondence to: Professor Sheila G Haworth, Institute of Child Health, 30 Guilford Street, London WC1N 1EH Accepted for publication 10 August 1992.

Br Heart J 1993;69:179–182
Clinical observations

<table>
<thead>
<tr>
<th>Case no</th>
<th>Sex</th>
<th>Age (mo)</th>
<th>Diagnosis</th>
<th>Qp:Qs</th>
<th>AO Sat (%)</th>
<th>Platelets (x 10^5/mm^3)</th>
<th>Hb (g/dl)</th>
<th>Drugs</th>
<th>BP (mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 M</td>
<td>4</td>
<td>5 PAT, VSD</td>
<td>NA</td>
<td>75</td>
<td>259</td>
<td>17-6</td>
<td>Nil</td>
<td>90/50</td>
<td></td>
</tr>
<tr>
<td>2 M</td>
<td>5</td>
<td>TOF</td>
<td>NA</td>
<td>81</td>
<td>696</td>
<td>14-7</td>
<td>Propranolol</td>
<td>80/45</td>
<td></td>
</tr>
<tr>
<td>3 M</td>
<td>4</td>
<td>TOF</td>
<td>0-9</td>
<td>86</td>
<td>501</td>
<td>12-7</td>
<td>Propranolol</td>
<td>80/50</td>
<td></td>
</tr>
<tr>
<td>4 M</td>
<td>8</td>
<td>VSD, PA band</td>
<td>0-7</td>
<td>84</td>
<td>563</td>
<td>12-3</td>
<td>Nil</td>
<td>95/60</td>
<td></td>
</tr>
<tr>
<td>5 F</td>
<td>1</td>
<td>TOF</td>
<td>0-7</td>
<td>70</td>
<td>367</td>
<td>14-4</td>
<td>Propranolol</td>
<td>102/60</td>
<td></td>
</tr>
<tr>
<td>6 M</td>
<td>1</td>
<td>TOF</td>
<td>0-4</td>
<td>71</td>
<td>170</td>
<td>19-3</td>
<td>Nil</td>
<td>100/65</td>
<td></td>
</tr>
<tr>
<td>7 M</td>
<td>1</td>
<td>TGA, VSD, PS</td>
<td>NA</td>
<td>78</td>
<td>223</td>
<td>12-7</td>
<td>Nil</td>
<td>95/50</td>
<td></td>
</tr>
<tr>
<td>8 M</td>
<td>1</td>
<td>TOF</td>
<td>0-4</td>
<td>75</td>
<td>360</td>
<td>16-6</td>
<td>Nil</td>
<td>105/65</td>
<td></td>
</tr>
<tr>
<td>9 M</td>
<td>1</td>
<td>TOF</td>
<td>0-8</td>
<td>85</td>
<td>264</td>
<td>14-4</td>
<td>Nil</td>
<td>104/75</td>
<td></td>
</tr>
<tr>
<td>10 F</td>
<td>2</td>
<td>PAT, IVS, RBT</td>
<td>0-6</td>
<td>84</td>
<td>236</td>
<td>13-4</td>
<td>Nil</td>
<td>95/50</td>
<td></td>
</tr>
<tr>
<td>11 F</td>
<td>2</td>
<td>PAT, VSD, RBT</td>
<td>0-6</td>
<td>75</td>
<td>144</td>
<td>19-3</td>
<td>Nil</td>
<td>102/75</td>
<td></td>
</tr>
<tr>
<td>12 F</td>
<td>2</td>
<td>TA, PS, VSD, LBT</td>
<td>0-5</td>
<td>74</td>
<td>235</td>
<td>16</td>
<td>Nil</td>
<td>102/50</td>
<td></td>
</tr>
<tr>
<td>13 F</td>
<td>2</td>
<td>TOF, RBT</td>
<td>0-5</td>
<td>76</td>
<td>311</td>
<td>14-3</td>
<td>Nil</td>
<td>104/47</td>
<td></td>
</tr>
<tr>
<td>14 F</td>
<td>2</td>
<td>TOF, RBT</td>
<td>0-6</td>
<td>75</td>
<td>253</td>
<td>14-8</td>
<td>Nil</td>
<td>85/50</td>
<td></td>
</tr>
<tr>
<td>15 M</td>
<td>2</td>
<td>TGA, VSD, PS, RBT</td>
<td>0-7</td>
<td>70</td>
<td>250</td>
<td>19-6</td>
<td>Nil</td>
<td>110/60</td>
<td></td>
</tr>
<tr>
<td>16 M</td>
<td>2</td>
<td>TOF, R&LBT</td>
<td>0-2</td>
<td>45</td>
<td>48</td>
<td>17-5</td>
<td>Nil</td>
<td>100/60</td>
<td></td>
</tr>
</tbody>
</table>

Median 18 7

TOF, Tetralogy of Fallot; VSD, ventricular septal defect; IVS, intact ventricular septum; RLTBS, right/left modified Blalock-Tausig shunt; PA, pulmonary artery; PAT, pulmonary atresia; PS, pulmonary stenosis; TGA, transposition of the great arteries; AO Sat, oxygen saturation; Hb, haemoglobin; Qp:Qs, pulmonary to systemic flow ratio; NA, not available.

A sample of 30–50 ml urine was stored at −20°C until assay. Urine samples (10 ml) were diluted 1:1 by volume with buffer at pH 8.0 and [2H4], 2,3-dinor-thromboxane B2 and [2H4] 2,3-dinor-6-oxo-prostaglandin F1α (5 ng each) were added. Eicosanoids were extracted on cyanogen bromide-activated sepharose columns containing immobilised antibodies that had been raised against 6-oxo-prostaglandin F1α and thromboxane B2 and that cross-reacted with their respective 2,3-dinor metabolites. Urine samples were applied under vacuum to the columns, which were washed with water (10 ml). Eicosanoids were eluted by addition of 2 × 0.5 ml acetone:water (95:5) and rotation of the columns for 15 min. Samples were taken to dryness (N2 stream) and derivatised as 3,5-bis-trifluoromethylbenzyl esters and trimethylsilyl ethers.23 They were analysed by a VG 70-SEQ gas chromatograph/mass spectrometer in the electron capture mode with methane or ammonia as the reagent gas. Carboxylate anions at mass/charge (m/z) ratio of 557 were monitored for 2,3-dinor-6-oxo-prostaglandin F1α and 2,3-dinor-thromboxane B2 and at m/z 561 for the deuterated internal standards. The detection limit for each eicosanoid was 5 pg/ml. Urinary creatinine concentrations were measured by standard methods.

Results

The patients with cyanotic congenital heart disease excreted significantly more 2,3-dinor-thromboxane B2 than the control group: 916(163) compared with 592(122) ng/g creatinine (2p = 0.014) (fig 1). Excretion of 2,3-dinor-6-oxo-prostaglandin F1α was 381 (61) in the cyanotic children compared with 589 (95) ng/g creatinine in the controls (2p = 0.08) (fig 2). The ratio of 2,3-dinor-thromboxane B2 to 2,3-dinor-6-oxo-prostaglandin F1α was significantly greater in the patients with heart disease (2:38 (0.28)) than in the healthy children (1:3 (0.22)) (2p = 0.002) (fig 3). Among the cyanotic children there was no correlation between excretion of 2,3-dinor-thromboxane B2 and 2,3-dinor-6-oxo-prostaglandin F1α or their ratio and the plasma count, haemoglobin, or pulmonary to systemic flow ratio (Qp:Qs).

Discussion

We showed an increase in the urinary excretion of 2,3-dinor-thromboxane B2 in the ratio of urinary 2,3-dinor-thromboxane B2 to 2,3-dinor-6-oxo-prostaglandin F1α.
2,3-dinor-6-oxo-prostaglandin F₁α in young children with cyanotic congenital heart disease and pulmonary outflow tract obstruction. The main source of thromboxane A₂ excreted as 2,3-dinor-thromboxane B₂ is thought to be activated platelets though this eicosanoid may also be produced by endothelial cells and macrophages.²⁴ ²⁵ It seems likely that in cyanotic congenital heart disease, increased excretion of 2,3-dinor-thromboxane B₂ is primarily of platelet origin as there is evidence of abnormal platelet function in such children.²⁶ Four of our patients had abnormal platelet counts (table I). In three patients with mild systemic arterial oxygen desaturation the counts were high (> 500 000 per mm³). In one patient, with the lowest arterial oxygen saturation, the platelet count was low (48 000 per mm³). Though the patient with the lowest platelet count excreted the most 2,3-dinor-thromboxane B₂, in the group as a whole there was no correlation between 2,3-dinor-thromboxane B₂ and the platelet count. Thrombocytopenia is a late event in cyanotic congenital heart disease. It usually accompanies severe hypoxaemia and polycythaemia.²³ With the contemporary practice of early palliation or corrective surgery thrombocytopenia is now an uncommon finding in young patients. Platelet half lives are, however, known to be reduced in patients who have cyanotic congenital heart disease with mild to moderate arterial oxygen desaturation but there is a compensatory increase in platelet production that maintains platelet numbers in the normal or higher than normal range.²⁴ ²⁵

The increased biosynthesis of thromboxane A₂ in the patients in this study, most of whom had normal platelet counts, could therefore reflect increased platelet activation with a compensatory rise in thromboxycyte production. An increase in platelet activation may also explain the paradoxical clinical observation that thrombotic episodes are seen more commonly in children under two years of age before the development of severe polycythemia and thrombocytopenia.²³ A negative correlation between 2,3-dinor-thromboxane B₂ and platelet count has been reported previously in women with pregnancy-induced hypertension.²⁶ This is an acute disease, however, in which compensatory mechanisms may not be effective, unlike the slower progression of hypoxaemia caused by worsening right ventricular outflow tract obstruction in congenital heart malformations. Although increased thromboxane biosynthesis is probably due mainly to platelet dysfunction, in vitro studies suggest that the exposure of the endothelium to reduced oxygen tension might also be relevant.²⁷ ²¹

We conclude therefore that in children with cyanotic congenital heart disease and a low pulmonary blood flow there is an increase in thromboxane A₂ biosynthesis and in ratio of thromboxane A₂ to prostacyclin. We suggest that these abnormalities precede the development of severe polycythemia and thrombocytopenia. The increase in the ratio of thromboxane A₂ to prostacyclin which favours vasoconstriction and platelet aggregation may contribute to the development of thrombotic episodes in such children. The findings also support the current practice of early correction rather than palliation, because even mild to moderate systemic desaturation seems to promote the biosynthesis of thromboxane A₂. The presence of abnormally high thromboxane A₂ production provides a therapeutic rationale for the widely used practice of prescribing aspirin to maintain the patency of systemic to pulmonary artery shunts in those children with unfavourable anatomy who require palliation as an initial procedure.

We thank Professor A J Mallet (Director, UMDS Mass Spectrometry Unit, St Thomas' Campus) for use of mass spectrometry facilities, Dr R Eraser for salicylic acid analysis, Ms Janet Kipping (Crickle matron), the nursing staff of Richard Bonham Carter ward, Great Ormond Street Hospital for help with the urine collections, and Miss Mary Shearer for secretarial assistance. This work was supported by the British Heart Foundation.

15 Roberts LJ, Sweetman BJ, Oates JA. Metabolism of