Central haemodynamic expressions of heart failure

Felix Burkart

The pathophysiology of congestive heart failure is complex and many important aspects are poorly understood; hence the subject remains attractive to researchers in clinical medicine.

Central haemodynamic changes in heart failure
Heart function is determined by contractility, preload, and afterload. When cardiac output decreases, a change of reflexes and compensatory mechanisms sets in to restore a normal haemodynamic situation. The phase of cardiovascular compensation is characterised at rest by an almost normal global pump performance and a stabilised faster heart rate. In the compensated phase of congestive heart failure the cardiac response to exercise is usually abnormal, and the reduced cardiac output is redistributed in a characteristic way. A normal person performing moderate exercise distributes 70%-80% of the cardiac output to the exercising skeletal muscle, and vasoconstriction may occur in the renal bed, but renal flow does not decrease due to an increased perfusion pressure.

The response of the patient with moderate compensated heart failure is different, as cardiac output fails to rise normally with exercise. To compensate for the decreased stroke volume, filling pressure rises to improve contractility. This happens already in normal people with increasing age due to a loss of compliance. Therefore, filling pressures and pulmonary vascular resistance increase above the normal limit during exercise as can be seen in a series of normal people of different ages. Although preload influences stroke volume in normal people, a change of the filling pressure alters stroke volume only slightly in severe heart failure. Conversely, stroke volume is largely independent of afterload in normal people whereas in patients with heart failure even slight reductions in stroke volume result in an improvement of the effective cardiac output.

Whatever led to the development of congestive heart failure, the heart and circulation have only limited means to adapt to and compensate for it. The mechanisms considered to be most effective and important are ventricular hypertrophy and neurohumoral changes.

Hypertrophy
A pressure or volume overload on the myocardium increases the wall stress of the involved ventricle and leads to hypertrophy. Although there is some controversy about what initiates hypertrophy, there is good evidence to suggest that the increased wall stress in itself, and not associated factors such as increased sympathetic stimulation, leads to hypertrophy.

Cardiac hypertrophy is generally viewed as a compensatory process that normalises wall stress. After complete normalisation of wall stress due to increased wall thickness, hypertrophy usually stabilises. Pressure overload rather than volume overload generally leads to more pronounced hypertrophy.

Measurements of the contractile state of the hypertrophied myocardium of animal models have been performed on the right ventricular myocardium of animal models subjected to pressure overload. From these experiments, it was postulated that overloaded hypertrophied myocardium has an inherent defect of contractility. This simple view is no longer accepted. Rather, the functional consequences of cardiac overload arise from the combined result of type, degree, and duration of overload, species studied, and particularly chamber affected. Thus it has been shown that the right ventricle is particularly sensitive to pressure overload, with decreases of contractility found even before clinical failure. The abnormalities are still reversible until the development of overt failure. Once failure has ensued, it is no longer reversible. In contrast, the left ventricle seems to tolerate both pressure and volume overload for a considerable time before abnormalities of contraction can be detected.

The differences between the functional consequences, particularly of pressure overload, between right and left ventricles are not fully understood but may be the consequence of the normal anatomical function of the ventricles. The right ventricle has been compared with a thin walled sac and the left ventricle to a thick walled pressure pump. Therefore, pressure overload constitutes a qualitative change for the right ventricle, but a quantitative change for the left ventricle.

Data obtained in vitro with human myocardium also lead one to question the opinion that the hypertrophied and failing heart has an intrinsic defect of contraction. Feldman et al showed in in vitro experiments that trabecular muscle from the hearts of heart transplant recipients with end stage heart failure developed the same peak isometric tension after stimulation by calcium,
glycosides, and phosphodiesterase inhibitors as trabecular muscle from donor hearts. The response was less, however, for β adrenergic stimulation by isoproterenol, or for inhibition of phosphodiesterase activity by milrinone. Data from Fowler et al also suggest similar results as the response of the left ventricle to intravenous calcium, in terms of changes in the maximal rate of rise of ventricular pressure in patients with severely depressed left ventricular function, was similar to that of patients with relatively normal left ventricular function. The response to β adrenergic stimulation with dobutamine was less in patients with more advanced heart failure.

Even though the concept of depressed contractile function in the failing myocardium must be seen in a different light, several abnormalities associated with hypertrophy and failure at the myocardial and cellular level of the cardiocyte have been studied.

(a) The increased mass and work load of hypertrophied myocardium require an increased blood supply. Myocardial blood flow is usually normal at rest, but the vasodilator reserve seems to be less during stress in most forms of hypertrophy.

(b) One of the most consistent findings, also noted in the study by Feldman, et al in hearts from heart transplant recipients, is a lengthened action potential and contraction together with increased time until relaxation is complete. It has been argued that this may be due to increased size of the cardiocytes, which may lead to a decrease in the proportion of electrically effective cell surface for the calcium entry per unit cell volume. Alternatively, this finding may show an inhibition of calcium uptake by, or release from, the sarcoplasmic reticulum in patients with heart failure.

(c) The production of cyclic AMP by hypertrophied and failing cardiocytes has also received a great deal of attention. The contractile response of failing myocardium to β adrenergic stimulation by isoproterenol is sub-normal. As the response to direct stimulation of the catalytic unit of adenylate cyclase by forskolin remains unchanged, the reduced response to isoproterenol probably can be attributed to deficient β adrenoceptor mediated cyclic AMP production. This is supported by data that show a down regulation of the number of β adrenoceptors in the failing myocardium, which leads to a preponderance of the β2 adrenoceptors. The failing myocardium seems to depend upon the stimulation of these to a greater degree than does normal myocardium. A defect of β adrenoceptor mediated sympathetic support may be important in depressing cardiac function in human congestive heart failure.

(d) An altered myosin adenosine triphosphatase composition of the failing myocardium has been described in a rat model, with a shift of the isoforms of this enzyme towards a slower, less active form. This effect seems to be species specific and is probably irrelevant in patients with heart failure, as myocardium in normal humans already contains mostly the V1 isoform of the enzyme.

Neurohumoral changes
Activation of the sympathetic nervous system in congestive heart failure results from unloading of arterial baroreceptors by reduced blood pressure or stroke volume. Increased efferent discharge of sympathetic neurons leads to increased heart rate, contractility, and peripheral vasoconstriction. In principle these changes are appropriate for maintaining the function of vital organs; nevertheless, peripheral vasoconstriction also increases afterload with its detrimental effects on ventricular performance.

The role of the renin-angiotensin-aldosterone system has also been thoroughly studied. Increased activity of this system and stimulation of release of antidiuretic hormone through a central action of angiotensin II lead to fluid retention that is thought to improve cardiac performance by the Frank-Starling mechanism. The peripheral vasoconstrictor effects of angiotensin II also lead to peripheral vasoconstriction; similar to increased sympathetic nervous system activity, they lead to increased afterload, with its potential for further deterioration of cardiac performance. The timing of activation of the sympathetic nervous system during development of heart failure is not clear, but recent studies in animal models and in humans suggest that it may only be activated acutely and during advanced stages of heart failure. Much of the increase seen in congestive heart failure may be due to the effects of commonly described diuretics. Peripheral resistance may be directly dependent on angiotensin mediated vasoconstriction in patients with advanced disease, although in patients with milder cardiac dysfunction, vasoconstriction may be rendered dependent by treatment with diuretics.

Another humoral factor that has attracted attention is the atrial natriuretic peptide (ANP) or factor. This is secreted in response to atrial distension or stretch. This has been documented in normal humans undergoing water immersion or volume loading, and also in patients with acute atrial distension due to atrial fibrillation or supraventricular tachycardia. This stimulatory pathway also seems to operate in patients with congestive heart failure in whom plasma ANP concentrations are raised and directly proportional to right atrial filling pressures. None the less, its role in congestive heart failure remains to be defined.

Physical capacity to work
The main symptoms that patients experience and that subjectively limit exercise capacity are pulmonary congestion, breathlessness, and muscle fatigue. Even though congestion has lent its name to the clinical syndrome, it should be recognised that this symptom is no longer as prominent because of the availabili-
ity of modern drugs such as diuretics, veno-
dilators, nitrates, or the angiotensin convert-
ing enzyme (ACE) inhibitors. Lipkin and
coworkers have shown that maximal oxygen
consumption as an objective measure of exer-
cise capacity did not correlate with maximal
pulmonary capillary wedge pressure during exer-
cise even though patients stopped per-
forming exercise in this particular test due to
dyspnoea.35 Similarly, Fink and coworkers
found no increase in exercise capacity in
patients with congestive heart failure after
acutely lowering their filling pressures either
by ACE inhibition or dobutamine infusions.36
Bayless and coworkers could not find a rela-
tion between an index of left ventricular
filling pressures and exercise duration, either
during control conditions or when the filling pressure
was lowered chronically by captopril or prazosin.37
In contrast with acute heart failure
where dyspnoea is clearly related to increased
pulmonary pressure, other factors seem to
influence this symptom to a large extent in
chronic congestive heart failure.

Drug studies for the treatment of heart
failure
One of the first studies to show the beneficial
effect of glyceryl trinitrate in the treatment of
heart failure due to acute myocardial infarc-
tion was the study of Chatterjee et al.38 With a
decrease in preload due to venous pooling or
volume reduction, filling pressures and clin-
ical symptoms of dyspnoea always improve,
but according to the severity of congestive
heart failure, stroke volume can decrease or
increase. If afterload is lowered at the same
time with—for example, ACE inhibitors—the
decrease in filling pressure always parallels an
increase in cardiac performance.

A beneficial acute effect does not guarantee
a long acting change. The study of Gavazzi et al
shows that with ibopamine the chronic
effect is less pronounced than the acute, but is
still above the control level, whereas
with other drugs such as prenalterol, the acute
effect vanishes totally after a few months.40
A similar long lasting effect on central haemo-
dynamics was shown with prazosin,41 with
hydralazine,42 or with ACE inhibition43 and
may have a different impact on the Veterans
Administration cooperative vasodilator heart
failure trial (V-HeFT) studies I and II44 and in the
large studies of ACE inhibition in heart
failure.45 46

Substudies of the studies of left ventricular
dysfunction (SOLVD) trial, where central
haemodynamics are measured, show that in
the treated group end diastolic volumes and
pressures are decreased compared with the
placebo group. These volumes slightly deterio-
rate in the second and third year but still show
a significant difference from the control
group. The pressure-volume relation curve,
which is situated in heart failure to the right
of normal with a decreased stroke volume, is
shifted in the control group further to the
right whereas in the enalapril it is returned
towards normality with an increase in stroke
volume.47

In conclusion, filling pressures increase
with age especially during exercise in parallel
with a decrease of the maximal heart rate
caided by a loss of compliance of the left ven-
tricle and the pulmonary vascular bed. In
heart failure, filling pressures above normal
limits, stroke volume, and changes in periph-
eral resistance are still important variables as
are end diastolic and end systolic volumes. In
studies where heart failure is being investi-
gated, drug treatment should not only
improve the acute haemodynamic situation,
but also be efficient in the long term. As well as
central haemodynamic changes the changes of
the peripheral circulation, hormonal state,
quality of life, and finally prognosis are
needed to fully evaluate new drug regimens in
patients with heart failure.

1 Plain SF, Minteer WY. Ventricular volume overload alters
cardiac output distribution in rats during exercise. J Appl Physiol
on pulmonary hemodynamics at rest and during
3 Cooper G, Kent RL, Uboh CE, Thompson EW, Marino
TA. Hemodynamic versus adrenergic control of
pressure response to exercise in patients with
4 Bürge SB, Strauer BE. Left ventricular hypertrophy in
5 Meerson FD, Zavatskiy in myocardial hyper-
6 Spann JF Jr. Heart failure and ventricular hypertrophy:
altering cardiac contractility and compensatory mecha-
7 Cooper G, Savata R, Harrison C, Coleman HN.
Mechanisms for the abnormal energetics of pressure-
induced hypertrophy of cat myocardium. Circ Res
8 Cooper G, Marino TA. Complete reversibility of cat right
ventricular chronic progressive pressure overload.
9 Sztawa T, Mindsky I, Carabello B, Alpert NR. Diastolic
myocardial stiffness in gradually developing left ventricu-
10 Cooper G. Cardiocyte adaptation to chronically altered
11 Feldman MD, Copelas L, Gwathmey JY, et al. Deficient
production of cAMP: Pharmacological evidence of an
important cause of contractile dysfunction in patients
12 Noffsinger MB, Laser JA, Hopkins GL, Minobe W, Bristow
RW. Assessment of the beta-adrenergic pathway in the
intact failing human heart: progressive receptor down-
regulation and subresponsiveness to agonist response.
13 Bache RJ, Vrobel TR, Ring WS, Enermy RW, Anderson
RW. Regional myocardial blood flow during exercise in
dogs with chronic left ventricular hypertrophy. Circ Res
14 Wusten B, Buss DD, Heist H, Schaper W. Dilatory capac-
ty in the canine left ventricle. Basic Res Cardiol
15 Arozos RS. Characteristics of action potentials of hyper-
trophied myocardium from rats with renal hypertension.
16 Keung ECH, Keung C, Aronson RS. Passive electrical
properties of normal and hypertrophied rat myocardium.
17 Sordahi LA, McCollum WY. Mitochondrial and sarcoplasmic reticulum function in
cardiac hypertrophy and failure. Am J Physiol 1973;224:
497-502.
18 Bristow MR, Ginsburg R, Umano V, et al. S7, S8, and S, adren-
ergic-receptor subpopulations in nonfailing and failing
human ventricular myocardium: coupling of both recep-
tor subtypes to muscle contraction and selective receptor
19 Lompre AM, Schwartz K, d'Albis A, et al. Myosin iso-
zyme redistribution in chronic heart overload. Nature
20 Mercader J, Bouveet P, Goeza L, et al. Myosin iso-
zymes in normal and hypertrophied human ventricu-