Neurostimulation and myocardial ischaemia

SIR—I read with interest the recent report by de Jongste et al and the editorial by Mulcahy et al on neurostimulation and the treatment of intractable angina.1,2 de Jongste et al provide further evidence that neurostimulation does not simply abolish chest pain but also affects myocardial ischaemia, reducing the frequency and duration of transient ischaemic episodes during ambulatory monitoring.1 They propose that the anti-ischaemic effect of spinal cord stimulation may be the result of an increased oxygen supply to the heart caused by a redistribution of coronary blood flow.

I and coworkers showed that transcutaneous electronic nerve stimulation (TENS) can increase resting coronary blood flow.3 We studied the effect of TENS in 34 patients with syndrome X (group 1), 15 patients with coronary artery disease (group 2), and 15 non-ischaemic patients as a control group (group 3). Coronary blood flow velocity (CBFV) (mean x 1SD) in the left coronary system was measured with a Judkins-Doppler catheter at rest and after stimulation.3 There was a significant increase in the resting CBFV in group 1 (from 6.8 ± 4.1 to 11.0 ± 45 m/s, P < 0.001) and group 2 (from 6.8 ± 4.1 to 11.0 ± 5.7 m/s, P < 0.001). However, there was no significant change in the resting CBFV in group 3. There were no significant changes in the coronary arterial diameters as a result of neurostimulation, suggesting that the mechanism of action of TENS is at the microcirculatory level. This is the first study to show that neurostimulation can increase coronary blood flow. This may explain the anti-ischaemic effects, which have been reported by several studies.1,4,5

I agree with the conclusion of Mulcahy et al that TENS and spinal cord stimulation are effective in the treatment of intractable angina and should be considered before the patient is subjected to a less tried treatment.2 Certainly, TENS treatment may provide a useful, non-invasive, and a safe alternative in the treatment of patients with intractable angina. Indeed, it may also provide a means of selecting patients who are more likely to benefit from spinal cord stimulation, a more invasive method of pain relief.

ANoop Chauhan
Department of Cardiology,
Royal Infirmary of Edinburgh,
Launcet Place,
Edinburgh EH3 9YW


This letter was shown to the author, who replies as follows:

SIR,—Several non-randomised clinical studies showed that, in addition to its analgesic effect, neurostimulation reduced myocardial ischaemia assessed by electrocardiography during exercise testing. We confirmed these findings in a randomised study.1 Though myocardial ischaemia, when present, does not seem to be concealed by the neurostimulation, a placebo effect is likely to some extent. However, only a prospective mortality study can establish definitively that the treatment is safe. Furthermore, the mechanistic basis of the anti-ischaemic action is not clear. Chauhan and coworkers provide us with valuable evidence of an increase in resting coronary blood flow velocity only after 5 minutes of neurostimulation.1 Their findings are in agreement with the study by de Landsheere et al,2 who used positron emission tomography (PET) during epidual spinal cord stimulation, and Mannheimers' recent article on the beneficial influence of spinal cord stimulation on impaired left ventricular function.4 de Landsheere et al found that ST segment depression was significantly reduced during neurostimulation and that regional myocardial blood flow was increased in resting and exercise states. They did not see a significant increase in myocardial blood flow during exercise. This latter finding may relate to the method or to a long-lasting carry over effect of neurostimulation. We showed, however, in our PET study after diprydamol stress testing in nine patients, that the perfusion ratio in the ischaemic region increased more than the ratio in the non-ischaemic region. This finding indicates a redistribution phenomenon.5 Whether the presumed anti-ischaemic effect of neurostimulation is related to alterations in myocardial oxygen supply or in demand is not yet known. Because neurostimulation is thought to trigger many interactions of neurohumoral compounds involved in neuronal networks, molecular biology may help us to determine the mechanism of action of neurostimulation.

Finally, before neurostimulation becomes generally accepted as an additional treatment for patients with severe angina, many technical problems remain to be overcome, such as lead dislocations and optimal stimulation characteristics, and strategies are needed to establish which patients need what kind of stimulation.


Simon Dack

SIR,—May I clarify an editorial adjustment made to the appreciation of Simon Dack (British Heart Journal, August 1994, page 104)? In the course of editing the manuscript I could not recall whether which I only saw in the published version. Once Dr Dack had retired from the editorship of the Journal of the American College of Cardiology, Dr Parmley enlisted him as the outside consultant editor for articles emanating from Dr Parmley’s own institution, the University of California, San Francisco, and not, as appears, the Mount Sinai Hospital. I only take the trouble to point this out as the purpose was to maintain the highest possible standards of peer review, to which Dr Dack was devoted: the idea that Dr Parmley had was to continue to use his services so that there would be completely independent editorial assessment of contributions submitted to the Journal of the American College of Cardiology from the University of California, San Francisco.

D M KIRKLER
Past Editor British Heart Journal