LETTERS TO THE EDITOR

The British Heart Journal welcomes letters commenting on papers that it has published within the past six months.

All letters must be typed with double spacing and signed by all authors.

No letter should be more than 600 words.

In general, no letter should contain more than six references (also typed with double spacing).

Asymptomatic ischaemia during daily life in stable coronary artery disease: relevant or redundant

Sir,—In their interesting review on the prognostic implications of silent myocardial ischaemia1 Mulcahy et al, referring to our paper on silent ischaemia after myocardial infarction,2 wrote: "Solimene et al performed ambulatory ST segment monitoring in 40 patients eight weeks after a first myocardial infarction and followed them for two years. Six patients had asymptomatic ischaemia during ambulatory monitoring. No events occurred in them: there was one cardiac death in a patient without ischaemia." There was some misinterpretation of our data. In fact, our investigation showed that 11 (27-5%) out of 40 patients had silent ischaemia after infarction: five only on exercise testing, five on exercise testing and Holter monitoring, and one on Holter monitoring. Of those 11 patients, four (36%) had a non-fatal cardiac event whereas only one (3-6%) of 29 patients without silent ischaemia had a cardiac event (fatal reinfarction) during this two year follow up. Kaplan-Meier analysis showed that during this period patients without silent ischaemia had a much less likely to experience a cardiac event (event rate 3-5%) than patients with ischaemia (62-3%) (P < 0-007). We concluded that silent myocardial ischaemia after myocardial infarction is of considerable prognostic significance—a somewhat different conclusion from that reached by Mulcahy et al.

Maria Cecília Solimene
Av. Eneas de Carvalho Aquino 44, 20 A, 05040-000 São Paulo, Brasil


This letter was shown to the authors, who reply as follows:

Sir—I thank Dr Solimene for her letter. Our review was about the prognostic significance of transient myocardial ischaemia detected on ambulatory ST segment monitoring and not exercise testing or any other investigation. In her letter Solimene confirms the findings of six patients with transient ischaemia on ambulatory monitoring after myocardial infarction.

In their study of 40 patients Solimene et al related silent ischaemia after myocardial infarction to other investigations (that is, exercise testing, n = 10; ambulatory monitoring, n = 6; one or the other, n = 11) to events, and not to a straight assessment of ambulatory ischaemia versus outcome. Only one "hard" coronary event (acute myocardial infarction or sudden coronary death) was reported by Solimene et al (cardiac death), and this occurred in a patient who did not have transient ischaemia on ST segment monitoring. We reported this in our review which focused on the relation between transient ischaemia and subsequent death or non-fatal myocardial infarction. Recurrence of angina (referred to as a non-fatal cardiac event by Solimene et al) was reported to occur in four patients with silent ischaemia, and our conclusion was that monitoring—Solimene et al do not state which. To reply to Solimene's letter in the context of our review and to establish whether "soft" end points occurred in those with transient ischaemia during daily life, we would need to know how many of these four recurrences of angina occurred in those with only a positive exercise test, and whether anything further happened to them.

David Mulcahy
Department of Health, Human Services, Public Health Service, National Institutes of Health, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, USA

Issues in cardiac pacing: can agism be justified?

Sir,—The continuing debate surrounding the cost effectiveness of rate adaptive pacing in the elderly remains handicapped by a lack of reliable data.1 The antagonists would point to the absence of hard clinical evidence to support the use of sophisticated pacemaker technology in the elderly. Recent trials, however, have been performed on mainly included elderly subjects, have confirmed the clinical impression that the elderly stand to gain as much from physiological pacing as younger patients.2,3 However, the highest stick with which to beat the enthusiasts is that of cost. In a retrospective analysis, de Belder et al estimated that implantation of dual chamber pacemakers in all suitable patients (that is, those with advanced atrioventricular block and sinus rhythm) aged over 75 years would have added an extra £264 357 to the regional pacing budget (an increase of 57%).2 A quoted figure is little wonder that there is some reluctance to implement the BPEG guidelines in the elderly.4 It is important to realise, however, that these figures were based on the assumption that all electrophysiological suitable patients aged over 75 have been given DDD pacemakers.

Patients aged over 75 years may constitute a selected group in whom the presence of advanced conduction disease may be a marker of an advanced aging process. Limiting, non-cardiac disease or cognitive impairment (for example, previous stroke—is not uncommon in this group and such patients would not normally be considered for a dual chamber systm. We do not know how many of our patients are offered VVI systems on the grounds of limiting, non-cardiac disease or cognitive impairment. Nevertheless, it is clear that available estimates of the financial implications of the BPEG guidelines are likely to be exaggerated and serve only to foster inappropriate implantation policies.

In addition to further clinical trials, which are likely to confirm the overall benefits of physiological pacing in the elderly, we need reliable information on the costs of implementing these research findings.

M. H. GREAVES O. ORMEROQD
Cardiac Department,
John Radcliffe Hospital,
Headington, Oxford OX3 7LD


Detection of left ventricular dysfunction after myocardial infarction: comparison of clinical, echocardiographic, and neurohormonal methods.

Sir,—A major limitation of the Peal index, even in its modified form1 is that it does not take into account the adverse prognostic significance of the association of a depressed cardiac function and ST segment depression. In thrombolytic trials such patients continue to have a high mortality despite treatment,1-3 not only because ST segment depression is an independent predictor of poor prognosis1 but also because it sometimes signifies structural damage caused by previous myocardial infarction.2 Furthermore, even when patients with ST segment depression prove to have smaller infarcts than their counterparts with ST segment elevation,4 they still have a severe impairment of left ventricular systolic function.5 These patients should, therefore,
left ventricular dysfunction, except possibly in the subgroup of patients with non-Q wave MI.

DARWIN DARBAR KEVIN DAVIDSON ANNA MARIA CHOY CHIM C LANG TERRY H PRINCE GRAEME P MCNELL NORMAN SJ KENNEDY ALLAN D STRUTHERS Ninewells Hospital and Medical School, Dundee DD1 9SY


Will serum enzymes and other proteins find a clinical application in the early diagnosis of myocardial infarction?

SIR,—Dr Timmis discussed the limitation of early biochemical diagnosis of acute myocardial infarction in guiding thrombolytic therapy. 1 The mortality of infarct patients in Newham General Hospital who present without ST elevation is only a third that of those with such elevation, none the less about 1 in 20 of such patients died. In addition, in infarct patients who present with predominant ST depression one year mortality is high (31%).2 De Wood et al's angiographic study of myocardial infarction was performed up to 24 hours after acute myocardial infarction 3 and the patency rate caused by spontaneous coronary re-canalisation would be expected to be higher than in the first 12 hours, the time window when thrombolytic therapy is believed to be effective. 4 Even so, 26% of these patients had occluded coronary arteries and might have benefited from re-vascularisation treatment. The result of the ISIS-2 trial suggests that patients without ST elevation (except bundle branch block) would not benefit from thrombolytic therapy, and the inclusion criteria of ISIS-2 raise the possibility that an appreciable number of these patients may not have had a myocardial infarction at all. No definitive data are currently available to guide treatment in patients with early biochemical confirmation of acute myocardial infarction, though the late application of biochemical changes and raised concentrations of cardiac enzymes. The LATE study showed a significant reduction in mortality in patients treated with alteplase when thrombolysis was started 6-12 hours after onset of symptoms. Other treatments such as beta blockers, ACE inhibition, and aspirin have been shown to be useful in the early management of acute myocardial infarction. 4 Early biochemical diagnosis may be useful in guiding this treatment.

Furthermore the use of rapid assays may offer advantages in terms of efficiency, patients with apical chest pain may be discharged earlier after negative results. None the less, to exclude acute myocardial infarction, myoglobin should be measured 6-4 hours after the onset of chest pain and creatinine kinase MB 6-8 hours after the onset of chest pain. 5

Rapid biochemical diagnosis of acute myocardial infarction may be useful in guiding treatment and the more efficient management in coronary care units of patients who present with chest pain.

H S LEE
Department of Cardiology, Killingbeck Hospital, Leeds 11
S J CROSS
K JENNINGS
Department of Cardiology, Aberdeen Royal Infirmary, Aberdeen AB2 9BB


4 LATE Study Group. Late assessment of thrombolytic efficacy (LATE) study with alteplase 6-24 hours after onset of acute myocardial infarction. Lancet 1993;342: 759-66.


SIR,—Dr Timmis states correctly that there is doubt about whether the use of serum markers of myocardial damage to confirm myocardial infarction in patients with chest pain but without ST depression in the electrocardiogram will lead to lives being saved by the use of thrombolytic therapy. 1 However, he overstates the case against the use of serum markers, by confusing lack of evidence of the evidence. The fact is that no large study has yet been published to compare the vascular mortality of thrombolysis and placebo in the subgroup of patients who have a non-diagnostic electrocardiogram (ECG) on admission to hospital, but a confirmed diagnosis of infarction on discharge. The GISSI study enrolled 451 patients with such a diagnosis on the ECG; the mortality in this whole group was 18-4%, and did not differ significantly whether streptokinase or placebo was used. 2 ISIS-2 enrolled 1137 such patients, and again the mortality rate of 18-6% was not improved by streptokinase. 3 The ASSET study distinguished only between normal and abnormal ECGs without distinguishing specificity, and the ECG of the patients enrolled in an ASSET group. 4 The ENISS-2 study, 59% of patients has a discharge diagnosis of definite or possible infarction. In the group of 2544 patients without ST elevation on the ECG, the 35 day mortality was 7-5% in the placebo group and 6-4% in the group treated with alteplase.