Aortic distensibility measured by magnetic resonance imaging in patients with Marfan's syndrome

Sir,—Adams and colleagues reported aortic distensibility measurements based on assessments by eye of magnetic resonance (MR) and echocardiographic images in 12 patients with Marfan’s syndrome. They suggest that the measurements are reproducible. Without repeating the patients on a separate occasion and repeating their analyses we do not see how they can conclude this. They do not specify the oscillation frequency of the ultrasound probes used for echocardiography (5-15 MHz) which is critical for such work, the maximum spatial resolution would be of the same order of magnitude as the change in aortic diameter being measured. Moreover, the errors involved in the off-line measurement of dimensions from a scan are much less than those involved in actually performing the scan. Therefore data on the repeatability of the analysis procedure—or methods for reproducibility from repeat scans at the same visit—tell us very little, if anything, about the true reproducibility of the measurement techniques.

In any discussion of the validity of direct measurements of distensibility at a particular aortic cross-section it is important to consider the role of blood pressure. Adams et al measured the change in diameter (or area) at discrete cross-sections of the ascending and descending thoracic aorta but then applied blood pressure values recorded from the brachial artery to calculate aortic distensibility. Blood pressure varies along the aortic tree and amplification of the pressure pulse between central and peripheral arteries makes brachial pressure values an inaccurate measure of central aortic pressure. There can be absolute differences in systolic and pulse pressures of up to 20 mm Hg. This problem can be partly overcome by indirectly determining an average elastic property of the aortic wall based on pulse wave velocity (PWV) measurements. Such an approach does not require the blood pressure at a particular aortic cross-section to be known. This is especially pertinent because aortic distensibility indices determined from PWV measurements have good reproducibility (coefficient of variation <10%). A transfer function can also be used to calculate central aortic systolic and pulse pressures based on non-invasively determined data on pressure waveforms in peripheral arteries. We describe the application of MRI or echocardiography for directly measuring the change in aortic diameter (or area) between diastole and systole by eye are increasing. But not many papers report the reproducibility of such methods for non-invasively assessing aortic distensibility. Kupari et al reported a mean (SD) reproducibility for their MR measurements in the ascending and descending aorta of 26.8% (23.9-3%) and 36.9-12.1%, respectively.1 Insard et al using echocardiography reported reproducibility values of up to 23% in the ascending aorta.2 Dart et al and also used echocardiography and, taking special care to obtain images axially to the aortic arch (to avoid measuring the change in diameter of an ellipse), obtained a mean reproducibility (SEM) in young, healthy, athletic men of 9.4 (2.9%).3 Unfortunately, these latter data tell us very little, if anything, about the reproducibility of the technique in older patients with stiffer arteries in whom the change in aortic diameter during the cardiac cycle would be much reduced (as would the total aortic distensibility).

In view of these data we do not find it surprising that Adams et al found that individual values for aortic distensibility varied by up to a factor of five depending on whether MR or echocardiographic data were used.

E DE LEHMANN
Academic Department of Radiology, St Bartholomew’s Hospital, London EC1A 7BE


This letter was written to the authors, two of whom reply as follows:

Sir,—Magnetic resonance imaging is an established non-invasive method of assessing aortic dynamics. We have shown in our study that aortic images obtained by this technique can be produced quickly and simply in patients with Marfan’s syndrome and have good reproducibility. Measurements made on these images can be reproducibly assessed by independent observers. We did not perform further scans on a second occasion and therefore cannot comment further on the reproducibility of this technique.

We agree that brachial pressure is lower than that measured directly. However, as Stefanadis et al have mentioned, the underestimation is similar in patients with coronary disease and healthy men and the pulse pressure measured indirectly by sphygmomanometer correlates well with the pressure measured directly by catheterisation of the ascending aorta.2

M J GOSLING
School of Applied Sciences, University of the South Bank, London


Is aspirin safe for patients with heart failure?

Sir.—The prophylactic benefit of aspirin may have been overstated not only in coronary heart disease, as Gleicher et al suggest, but also in thromboembolism related to non-valvar atrial fibrillation (NAVF). In NAVF, this overstatement may be the result of failure to recognise that warfarin cannot prevent all thromboembolic events in all patients,3-7 and that aspirin may sometimes be perceived to have a prophylactic benefit because some NAVF patients have non-cardiac or non-cardiovascular thromboembolism that are more amenable to risk modification by aspirin than by warfarin.4

Furthermore, the risk/benefit profile of antithrombotic treatment might be more favourably disposed towards aspirin than towards warfarin in high-intensity5 than in low-intensity6 anticoagulant regimens. For thromboembolic prophylaxis, the principal disadvantage of aspirin is the unpredictability of its Embolus Task Force. Cardiovascular brain embolism. Arch Neurol 1986;43:71-84.


