Hyperhomocysteinaemia and premature coronary artery disease in the Chinese

SIR,—We were interested by the study by Lolin and colleagues.1 The Chinese patients with premature coronary artery disease had higher concentrations of folate in serum and erythrocytes, and higher serum vitamin B12 than healthy control subjects. There was not a significant difference in prevalence of fasting hyperhomocysteinaemia; however, there was a significantly higher prevalence of hyperhomocysteinaemia following methionine loading in patients versus controls. There was a significant difference in fasting and post-methionine load plasma total homocysteine (tHcy) levels which emerged as uncontrolled vitamin B12 than control subjects ($P = 0.004$ and $P = 0.003$).

Hyperhomocysteinaemia may emerge due to genetic factors, for instance from deficiency of the enzyme cystathionine β synthase (CBS), which participates in a transsulfuration pathway, or from thermolabile or mutant enzyme methylenetetrahydrofolate reductase (MTHFR) which synthesises 5-methyltetrahydrofolate, or from inborn errors of cobalamin transport and metabolism. Lower concentrations of vitamins B2, B6, and B12, cofactor form flavin adenine dinucleotide (FAD), or folate in serum or plasma may also be associated with hyperhomocysteinaemia. Vitamins B12, B6, and B12 are coenzymes for enzymes methionine synthase, CBS, and MTHFR, respectively. 5-Methyltetrahydrofolate is a methyl donor for methylation of homocysteine into methionine. Deficiency of these vitamins in blood may occur because of dietary or environmental factors.

Miller and colleagues have indicated that vitamin B12 deficiency in humans or rats may not be associated with fasting hyperhomocysteinaemia. Fasting plasma tHcy concentrations in vitamin B12 deficient rats were not significantly different from those in control rats; however, the folate deficient rats had plasma tHcy concentrations nearly 10-fold higher than control rats ($P = 0.001$). During methionine loading, vitamin B12 deficient rats exhibited a dramatic elevation of plasma tHcy concentrations which persisted for four hours or longer ($P < 0.001$). Folate deficient rats did not show any significant increase in plasma tHcy.1,4

My colleagues and I have shown that serum folate and vitamin B12 concentrations had significant influence on fasting plasma tHcy concentrations; however, the influence of vitamin B12 on fasting plasma tHcy was weak, probably due to smoking.5 These findings may indicate that homocysteine response during methionine loading may be different for folate or vitamin B12 deficiency. Folate deficiency may be associated with fasting hyperhomocysteinaemia. Methionine loading test may be used to uncover post-load hyperhomocysteinaemia which may be associated with deficiency of vitamin B12 or homozygote deficiency of CBS.

Therefore, it may be interesting to measure concentrations of vitamin B12 in plasma or whole blood to investigate a potential role of vitamin B12 in the development of hyperhomocysteinaemia in these patients. This might be important because patients with premature coronary artery disease had higher concentrations of folate in serum and erythrocytes. Measurement of vitamin B12 in serum from patients and control subjects may also add new information in the study.

This letter was shown to the authors, who reply as follows:

SIR,—We thank Dr Mansoor for his helpful comments on our study, particularly on the importance of finding the cause(s) for hyperhomocysteinaemia in our subjects. His suggestions about measuring B12 and B6 are very welcome. They are, however, based on the observations that the incidence of post-methionine hyperhomocysteinaemia, but not of fasting hyperhomocysteinaemia, was significantly higher in patients than in controls. The number of subjects in our study was small and, though not statistically significant, there was a difference between patients and controls regarding fasting hyperhomocysteinaemia (22% vs 4.8%, respectively). Further, the mean serum homocysteine levels were significantly higher in patients than in controls in both the fasting and post-methionine states, although the difference between the fasting levels was less striking.

Dr Mansoor pointed out the many causes for hyperhomocysteinaemia. We believe that low serum or plasma folate levels were associated predominantly with fasting hyperhomocysteinaemia, and B12 deficiency or homocysteine deficiency of cystathionine β synthase (CBS) has contributed to the hyperhomocysteinaemia. Our study showed that in the Hong Kong Chinese, folate and B12 deficiencies were unlikely to be aetiologically important. This may have contributed to the relatively low incidence of, and modest fasting, hyperhomocysteinaemia. The striking response to methionine may well have been accounted for by heterozygous deficiency of CBS. Dietary deficiencies of B12 and B6, although possible, are less likely although we will follow the suggestions of Dr Mansoor. Both vitamins are present, among others, in poultry, meat, fish, soya bean (particularly B12), asparagus (particularly B6), spinach, and broccoli, all of which are eaten in abundance in this population throughout the year. A defective utilisation of these coenzymes through deficiency of CBS and the presence of the heat labile or a mutant 5-methyltetrahydrofolate reducate is, however, a distinct possibility and we are presently investigating these enzymes in our population.

YI LOLIN
Consultant in Clinical Pathology and Metabolic Medicine, Kent and Sussex NHS Trust, Konig's College Hospital, Mount Ephraim, Tunbridge Wells, Kent TN4 8AT, United Kingdom

Homocysteinaemia and coronary athero-sclerosis

SIR,—I read with great interest the article on hyperhomocysteinaemia and premature coronary artery disease in Hong Kong Chinese patients.1 As suggested by the title of the accompanying editorial,1 homocysteinaemia has emerged as an important risk factor for the development of coronary artery disease.

Homocysteine in human plasma arises solely from the breakdown of the essential amino acid methionine derived from dietary sources. Dietary homocysteine is complexed to various thiols, and does not appear under normal circumstances to influence plasma homocysteine.2 The plasma concentration of homocysteine is strictly controlled and kept within a very narrow range in normal subjects, either by its degradation via cystathionine to cysteine and pyruvate, or via methylation to methionine.3 Although it can be made to rise by ingestion of a very high so-called "loading dose" of methionine in normal subjects on normal diets, such postprandial increases are small, with plasma homocysteine concentrations declining rapidly to the normal range. The study by Lolin and colleagues suggests that in the Hong Kong Chinese patients hyperhomocysteinaemia is related to genetic and/or acquired abnormalities in enzymes associated with its metabolism.

Thus, while patients with reduced concentrations of cystathionine β synthase, or 5,10-methylenetetrahydrofolate reductase have a widely varying biochemical outcome, they all have in common an elevated plasma homocysteine.4 Patients with these metabolic disturbances...
bances have one common clinical manifestation, namely, premature coronary artery disease. Patients with Down's syndrome have an additional copy of the gene that codes for cystathionine synthase, thus giving them double the amount of this enzyme. The result is that they have a much lower normal homocysteine concentration, namely, premature homocystinuria, namely, premature homocystinemia.

McCully has repeatedly noted Down's syndrome patients have been noted as being remarkably free from coronary artery disease.

It has been over two decades since the publication of the original animal work of McCully and Wilson3 who proposed the homocysteine theory of arteriosclerosis. After being ignored for many years, homocysteine has finally re-emerged as a risk factor for the development of human atherosclerosis. Although it is "the new player in the field of coronary risk",3 homocysteine will become an increasingly important player that can no longer be ignored in the modern-day management of patients with coronary artery disease.

TSUNG O CHENG
Professor of Medicine,
The George Washington University,
Washington, DC 20037, USA

3 Scott J, Weir D. Homocysteine and cardiovas-
4 Scott JM, Weir DG. Polytetrahydrobiotin B12 inter-
relationships. Essays in Biochemistry 1994;28:
63-72.
5 McCully KS, Wilson RB. Homocysteine the-
yory of atherosclerosis. Atherosclerosis 1975;22:
215-27.

This letter was shown to the authors, who reply as follows:

Sir,—Professor Cheng indicates that: (1) patients with genetic defects (cystathionine β synthase (CBS) and 5,10-methylene-tetrahydro-
folate reductase) have high plasma concentrations of homocysteine and premature coronary artery disease (CAD); (2) confirmed again by Løin's paper; and (2) patients with Down's syndrome have a high CBS activity (the CBS gene is located on chromosome 21) and subsequently low concentrations of homocysteine resulting in a low incidence of CAD.

The high CBS activity and the low plasma concentration of homocysteine in Down's syndrome patients have been known for a long time1,2 and, in 1977, Murdoch described Down's syndrome as a human model free from atheroma.3 Thus, the remarks of Professor Cheng are correct, although not new. The remaining question is the possible causal relationship between the genetic abnormality and the weak incidence of CAD in Down's syndrome patients. The latter is still controversial because of the reduced life expectancy and other interfering factors. Finally, authors have also reported "normal" concentrations of homocysteine in Down's syndrome patients.4 I think that we need more data to relate the gene abnormality to a low incidence of CAD in Down's syndrome patients.

G MONTALESCOT
Groupe Hospitalier Pitié-Salpêtrière,
47-83 Boulevard de l'Hôpital,
75013 Paris, Cedex 13, France

Sir,—We were interested to read Pitt and colleagues' description of their patient with endomyocardial fibrosis.5 At the end of their discussion they mention that future manage-
ment of their patient will involve assessment for cardiac transplantation. However, they do not mention endocardectomy, which we regard as the current choice in suitably symptomatic patients. The operation cons-
ists of endocardial decortication, essentially a coring out of the fibrous tissue, with antico-
agulant support for days. We recently had a 40-year-old female Lebanese patient with endomyocardial fibrosis effect-
ing both ventricles who underwent biventricular endocardectomy with tricuspid valve annuloplasty. Although she had a slow recovery requiring inotropic support for five days, and was eventually discharged on the 20th postoperative day, symptomatically she was much improved.

Endocardial decortication for this disease was introduced by Dubost et al in 1975 and there are now several operative series in the literature.6 Most series report a hospital mortality rate of 20%, most often secondary to low cardiac output. For those who survive the operation 75% are alive after five years, and in the majority of cases there is good clinical improvement.7 Untreated patients with endomyocardial fibrosis usually die within three years. Most patients in the reported series were in NYHA class III or IV and it is likely that operation mortality will be less if patients undergo surgery at an ear-
lier stage.

JAMIL MAYET
PRAPA KANAGARATNAM
CHRISTOPHER LINCOLN
PAUL OLDESHAW
Royal Brompton Hospital,
Sydney Street,
London SW3 6NP, United Kingdom

1 Pitt M, Davies MK, Brady AJB. Hyperhomocys-

Endomyocardial fibrosis in Egypt: an illustrated review

Sir,—We read with great interest the paper on endomyocardial fibrosis (EMF) by Rashwan et al.8 Their association of cases with hepatosplenic schistosomiasis, which was felt to be involved in the production of EMF rather than just the coincidence of two diseases, has been reported previously. We published a case report in 1973 making the suggestion of a pathogenetic relation of schistosomiasis to EMF.9 Another case report illustrating the association was published more recently.10

J H ANTONIO
MC DE MIZI
D MIRANDA
HL SOARES
Department of Internal Medicine,
Faculdade de Ciências Médicas Bala Horizonte,
Minas Gerais—Brazil
D MIRANDA
A NUNES
Department of Pathology,
Santos Coelho de Bala Horizonte,
Minas Gerais—Brazil

2 Antionio JH, Diniz MC, Miranda D, Nunes A, Melo EC. Endomyocardial fibrosis and cardiopulmonary schistosomias-
sis. Arq Bras Cardiol 1973;26:569-75.

Deterioration in renal function with enalapril but not losartan in a patient with renal artery stenosis is a solitary renal

Sir,—Angiotensin-converting enzyme (ACE) inhibitors are widely used in the treatment of hypertension and heart failure. However, when given to patients with bilateral renal artery stenosis or unilateral stenosis in a soli-
tary kidney, they can cause renal impairment that is usually reversible on stopping the drug.1 Recently, an angiotensin II (AII) receptor blocker (losartan) was introduced for the treatment of hypertension. We report a patient with severe hypertension and apparent heart failure who developed renal impairment with an ACE inhibitor but not with the AII receptor antagonist.

A 73 year old man with a previous history of severe hypertension was admitted to hospital with symptoms and signs of biven-
tricular failure. Blood pressure was 150/90 mmHg and apical heart rate was 148 beats/min on admission. His left renal artery had a 75% stenosis. Renal ultrasound showed a small left kidney (8.9 cm) and a normal size right kidney. Echocardiography revealed concentric left ventricular (LV) hypertrophy, no valve lesions and good LV function.

Coronary angiography revealed an 80% diffuse disease of the left anterior descend-
ing artery, and a 50% obstructive marginal stenosis. Renal angiography performed at the same time revealed total occlusion of the left renal artery and a proximal severe steno-

sis of a single right renal artery (fig). Enalapril was therefore discontinued and five days later serum creatinine fell to 148 μmol/l.

Subsequently, blood pressure and symp-
toms of apparent heart failure were difficult to control despite adequate control of the atrial fibrillation. The patient was then started on losartan 50 mg twice daily in addition to two Frumil (co-amlofruse 5/40)