CASE STUDY

Chronic radiodermatitis following cardiac catheterisation: a report of two cases and a brief review of the literature

L Dehen, C Vilmer, C Humilière, T Corcos, D Pentousis, L Ollivaud, D Chatelain, L Dubertret

Abstract
Cardiac angiography produces one of the highest radiation exposures of any commonly used diagnostic x-ray procedure. Recently, serious radiation induced skin injuries have been reported after repeated therapeutic interventional procedures using prolonged fluoroscopic imaging. Two male patients, aged 62 and 71 years, in whom chronic radiodermatitis developed one to two years after two consecutive cardiac catheterisation procedures are reported. Both patients had undergone lengthy procedures using prolonged fluoroscopic guidance in a limited number of projections. The resulting skin lesions were preceded, in one case, by an acute erythema and took the form of a delayed pigmented telangiectatic, indurated, or ulcerated plaque in the upper back or below the axilla whose site corresponded to the location of the x-ray tube during cardiac catheterisation. Cutaneous side effects of radiation exposure result from direct damage to the irradiated tissue and have known thresholds. The diagnosis of radiation induced skin injury relies essentially on clinical and histopathological findings, location of skin lesions, and careful medical history. Interventional cardiologists should be aware of this complication, because chronic radiodermatitis may result in painful and resistant ulceration and eventually in squamous cell carcinoma.

Keywords: catheterisation; angiography; radiation; radiodermatitis; skin injury

Cardiac angiography exposes both patients and staff to the highest radiation levels in diagnostic radiology,1,2 and recently, as the number of...
diagnostic and interventional cardiac catheterisation procedures has greatly increased, serious radiation induced skin injuries following prolonged fluoroscopic imaging have been reported.3–5 Patients undergoing repeated cardiac catheterisation and coronary angioplasty procedures have developed chronic radiodermatitis.67 This skin lesion may result in ulceration and transformation into an invasive squamous cell carcinoma with a high risk of metastasis.8

We describe two patients in whom chronic radiodermatitis developed after being exposed twice to radiation during cardiac catheterisation.

Patients and methods

CASE 1

A 71 year old man presented to the dermatology department with a skin lesion just below the right axilla that had been present for two years. Physical examination showed an 8 × 6 cm pigmented, telangiectatic lesion with central induration (fig 1). Histopathological examination of the lesion disclosed important dermal fibrosis and numerous telangiectases (fig 2). The histopathological findings were consistent with a diagnosis of chronic radiation injury. The patient denied any contact with radioactive materials or exposure to possible radiation sources. He reported, however, having been hospitalised for an acute inferior myocardial infarction two years before developing the skin lesion. While in hospital he underwent coronary angiography via the femoral approach. His left coronary artery was free from significant disease and provided a collateral circulation to the right coronary artery (RCA). Owing to significant iliac artery tortuositities and an anomalous origin of the RCA, two different operators were unable to catheterise selectively this coronary vessel. The patient was therefore rescheduled three weeks later for a second attempt using the left brachial approach. At that time, three different operators failed to catheterise the RCA and the patient was left on medication. The total duration of the procedures and the duration of radiation exposure were not specified in the medical records but the patient recalls spending several hours in the catheterisation laboratory. The patient did not complain of burning sensations or skin changes during the weeks

![Figure 2](image)

Figure 2 Biopsy specimen from case 1 showing sclerosis of upper and middle dermis with ectatic blood vessels (haematoxylin and eosin, original magnification × 100).
following the procedure and was put under regular clinical follow up to detect ulceration and malignant transformation.

CASE 2
A 62 year old man presented with a painful ulcer on his back that had appeared over the previous six months. On physical examination, a 3 cm² ulceration was found in the centre of a 10 cm² right subscapular pigmented plaque, which had been noticed by the patient two years earlier (fig 3). Histopathological examination revealed deep epidermal ulceration with important dermal and hypodermal fibrosis. The histopathological findings were consistent with a diagnosis of chronic radiation injury and secondary ulceration. The lesion was excised. The patient denied any contact with radioactive materials or exposure to possible radiation sources. A review of his medical history disclosed that he presented with a mild inferior infarction one year before developing the cutaneous lesion and was admitted to hospital. Coronary angiography on day 4 showed single vessel disease with a tortuous RCA which had a severe stenosis of its mid-segment and inferobasal hypokinesia on left ventriculography with a left ventricular ejection fraction of 74%. Coronary angioplasty performed on day 7 was very strenuous and prolonged because of iliac and coronary tortuosities. Three balloon catheters of increasing diameter (2–4 R/min), but with a greatly variable exposure (30–60 Roentgen/minute (R/min) at 30 frames per second) during a short and relatively constant time (averaging one minute).

In contrast, fluoroscopy has a lower exposure rate (2–4 R/min), but with a greatly variable duration, especially in lengthy and difficult procedures. In a recent study, Patte et al estimated that radiation doses during coronary angioplasty averaged 124 R but varied considerably (fluoroscopic time per angioplasty averaged 19 minutes but exceeded one hour in some cases). As 1 R of exposure delivers a dose of about 1 rad to soft tissue, the absorbed dose may reach several Gray (1 Gray (Gy) equals 100 rad).

Cutaneous side effects of X rays were first described several weeks after the discovery of X rays by Wilhelm Konrad Roentgen in 1895. Chronic radiodermatitis had been observed by 1899 and the first report of such a lesion appeared in 1902. However, until recently, little attention was given to dermal radiation injury following cardiac catheterisation because skin was viewed as a "non-critical" and relatively radioresistant organ; the probability of skin injury is also reduced by changes in incident beam orientation that usually take place during the procedure. Cutaneous side effects, however, are the main dose dependent effects of ionizing radiation. They result from direct damage to the irradiated tissue and have known threshold doses. Specifically, the threshold doses for the development of erythema, permanent epilation, moist desquamation, and necrosis are 3–10, 7–10, 12–25, and 25 Gy, respectively. Chronic radiodermatitis and squamous and basal cell carcinomas may develop months to years after radiation exposure. The cumulative dose necessary to induce chronic skin changes is estimated to be above 10 to 12 Gy. Our two patients had clinical and histopathological changes consistent with those described by Lichtenstein et al and by D’Incan and Roger. Radiodermatitis was located in the right axilla (five patients), left upper back (two patients), right upper back (two patients), and right centre back (one patient). The four patients described by Lichtenstein and colleagues (table 1) had undergone numerous (three to nine) cardiac catheterisation procedures. Two of these patients had a history of acute dermatooses that developed immediately after exposure to X rays in the same location and soon resolved. The latent period between the initial procedure and the onset of chronic radiodermatitis varied from 2 to 10 years. D’Incan and Roger reported six patients who developed radiodermatitis following multiple catheterisation procedures, but the time between the first cardiac catheterisation procedure and the onset of skin injury was much shorter (15 days to three months) (table 2). When seen early in their development, the lesions were usually brown, pigmented, non-indurated plaques with a well defined border, and were misdiagnosed as fixed drug eruptions. After one year of follow up, progressive induration occurred which normally led to the erroneous diagnosis of morphea. These data emphasise the extreme variability in time of onset, clinical features, and outcome of delayed radiation induced skin injuries. In contrast with previous reports, our two patients with chronic radiodermatitis had undergone only two cardiac catheterisation procedures (which included two diagnostic coronary angiography procedures for the first patient). These procedures were difficult and prolonged.
and the lesion location is explained by the projection used to catheterise the RCA (left lateral view with the x-ray tube near the right axilla in the first patient, and left anterior oblique view with the tube under the right scapula in the second patient). Chronic radiodermatitis results in erythema, telangiectasia, hyperpigmentation, fibrosis, atrophy, and ulceration, with histopathological showing dermal fibrosis. The diagnosis of chronic radiodermatitis following cardiac catheterisation relies essentially on clinical (location of lesions and careful medical history) and histopathological findings. In these cases, the catheterisation procedures were performed by experienced operators with an individual case volume over 200 procedures per year, in two different catheterisation laboratories with up-to-date (<10 years old) digital radiological equipment meeting current radiation safety guidelines, properly calibrated and maintained, and involving a quality assurance programme.

The patients had no diseases associated with increased sensitivity to radiation and were not taking any medication shown to induce hypersensitivity after radiation exposure. Even though cine and fluoroscopy exposure times were not available from medical records, it is likely that extended periods of fluoroscopy in a limited number of projections were the main factors contributing to radiation induced injury.

Radiation risk to patients undergoing cardiac catheterisation may be reduced by various techniques. These include collimation of the beam to the region of interest, minimising both fluoroscopic and cine times, and filming at the lowest clinically acceptable frame rate. Pulsed current fluoroscopy may also decrease the dose rate while improving image quality. Lichtenstein and colleagues made several recommendations to interventional cardiologists, including careful inspection of the exposed skin before each procedure, and recording of the size and location of the skin exposed in the patient’s medical record (to select a different projection in future catheterisation procedures). Finally, topical radioprotective agents such as prostaglandins have been shown to be effective in animals, however, no human studies have been carried out using these compounds.

CONCLUSION
The true incidence of skin complications following cardiac catheterisation is unknown. Chronic radiodermatitis may be misdiagnosed because of extreme variability in time of onset, clinical features and outcome, and because its connection with a previous angiographic procedure may be unrecognised. Patients who have been exposed to lengthy fluoroscopic procedures should be examined periodically and treated accordingly, considering the limitations of our current knowledge and the potential for skin complications.

Table 2 Patients with “subacute” radiodermatitis following cardiac catheterisation (from D’Incan and Roger)

<table>
<thead>
<tr>
<th>Patient sex/age (years)</th>
<th>Cardiac investigations</th>
<th>Time of onset* (months)</th>
<th>Clinical features</th>
<th>Location of skin lesion</th>
<th>Prior acute reaction</th>
<th>Target coronary vessels</th>
<th>Histopathological findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>M/48</td>
<td>1 PTCA</td>
<td>3</td>
<td>5×3 cm pigmented plaque with inflammatory border</td>
<td>Right upper back</td>
<td>No</td>
<td>LAD</td>
<td>Not done</td>
</tr>
<tr>
<td>M/81</td>
<td>2 PTCA</td>
<td>2</td>
<td>6×4 cm pigmented then indurated plaque</td>
<td>Below right axilla</td>
<td>No</td>
<td>Unknown</td>
<td>Dermal fibrosis</td>
</tr>
<tr>
<td>M/61</td>
<td>1 PTCA</td>
<td>0.5</td>
<td>10×3 cm erythematous and ulcerated plaque</td>
<td>Front right axilla</td>
<td>—</td>
<td>RCA</td>
<td>Not done</td>
</tr>
<tr>
<td>M/42</td>
<td>2 PTCA</td>
<td>3</td>
<td>9×8 cm pigmented, then indurated and telangiectatic plaque</td>
<td>Right upper back</td>
<td>No</td>
<td>LAD, RCA</td>
<td>Not done</td>
</tr>
<tr>
<td>M/64</td>
<td>1 angio</td>
<td>3</td>
<td>15×12 cm pigmented, then indurated plaque</td>
<td>Front right axilla</td>
<td>No</td>
<td>RCA</td>
<td>Dermal fibrosis</td>
</tr>
<tr>
<td>M/71</td>
<td>2 consecutive PTCA</td>
<td>1</td>
<td>13×7 cm morphea-like and ulcerated plaque</td>
<td>Left upper back</td>
<td>No</td>
<td>RCA, Cx</td>
<td>Epidermal degeneration, dermal sclerosis, fatty necrosis</td>
</tr>
</tbody>
</table>

*Time between the first cardiac investigation and the discovery of the cutaneous lesion.

Angio, diagnostic coronary angiogram; Cx, left circumflex artery; LAD, left anterior descending coronary artery; PTCA, percutaneous transluminal coronary angioplasty; RCA, right coronary artery.
because the long term consequences of radiation exposure (chronic radiodermatitis and malignant transformation) may appear months or even years later.5–7 Radiation exposure during invasive cardiac procedures remains an important issue.20

We thank Sylvie Brossais for her expert secretarial assistance.

