SCIENTIFIC LETTER

Improved postoperative outcomes with stentless aortic valve: a community hospital experience

S A Olenchock, Jr, J F Reed III, A Brown, F M Garzia

Heart 2003;89:551–552

METHODS

The cardiac surgery registry at St Luke’s Hospital was reviewed for all consecutive patients who underwent bioprosthetic AVR with the Toronto SPV valve (n = 100) or with a mechanical or stented bioprosthetic valve (Carpentier-Edwards porcine SAV, Carpentier-Edwards pericardial valve, or St Jude mechanical valve) with or without other concurrent cardiac procedures in 1998-99.

The cardiac surgery registry includes preoperative data, operative data, cardiopulmonary bypass and support, postoperative information, and readmission data. These data and definitions were identified and collected according to the Society of Thoracic Surgeons/American Association for Thoracic Surgery guidelines for reporting events after cardiac valve operations.

RESULTS

A greater proportion of the Toronto SPV group (68%, 68/100) underwent combined coronary bypass (CABG)/AVR procedures compared with the mechanical or stented bioprosthetic group (52%, 39/75; p = 0.03). Patients receiving the Toronto SPV valve were older (74.5 (6.1) v 64.9 (13.7) years; p = 0.001), included a higher proportion of females (52.0% v 38.7%; p = 0.080), and were more likely to be hypertensive (82.0% v 70.7%; p = 0.077). No other differences in risk factors were observed between the two groups.

DISCUSSION

Analysis of the present data revealed that the Toronto SPV valve, despite its more complex implantation technique, can be safely used in complex procedures in a community hospital setting. It was found that the difference in cross-clamp time became less significant when coronary revascularisation was combined with AVR.

Furthermore, patients received a larger prosthesis relative to their BSA when a Toronto SPV was implanted than in the case of a mechanical or stented bioprosthetic valve. It is recognised that manufacturer’s sizing is not standardised, and therefore a direct comparison is limited. Sizing for the Toronto SPV valve takes into account the diameter of the sinotubular junction—a measurement that is not considered for the stented valves. It is possible that the larger prosthesis size of the Toronto SPV valve is related to this method of sizing. Irrespective of the reason, in the present study the ability to implant a larger prosthesis was found to be invaluable, especially in the elderly (notable female) patients. This benefit was largely due to the lack of any need for aortic root enlargement—a procedure of potentially high morbidity in patients with calcified aortic roots. The calcified aortic root has

Abbreviations: AVR, aortic valve replacement; BSA, body surface area; CABG, coronary artery bypass grafting; IABP, intra-aortic balloon pump; NYHA, New York Heart Association

www.heartjn.com
not hampered our ability to implant the Toronto SPV valve, the flexibility of which may conform better to the calcified aortoventricular junction, thereby reducing the risk of paravalvular leak.

In the present study, no patient in the Toronto SPV group required postoperative insertion of IABP and, when compared with the mechanical or stented bioprosthetic group, this finding was significant. It is believed that this outcome is the result of an improved patient to prosthesis size match, which thereby allows a decrease in residual left ventricular outflow tract obstruction and results in improved early postoperative haemodynamics.

In conclusion, although patients who received a Toronto SPV valve had more risk factors (age, female sex) and were more likely to require concomitant coronary revascularisation, there were no differences in either mortality or perioperative complications compared with patients receiving mechanical or bioprosthetic valves. Thus, the Toronto SPV valve displays improved immediate postoperative haemodynamics, as noted by the decreased need for IABP and this finding is attributed in part to the superior match between valve size and BSA. The Toronto SPV valve, despite its more complex implantation technique, can be safely used in complex procedures in a community hospital setting.

REFERENCES

Authors’ affiliations

S A Olenchock, Jr, Department of Surgery, St Luke’s Hospital and Health Network, Bethlehem, Pennsylvania, USA

J F Reed III, A Brown, Research Institute, St Luke’s Hospital and Health Network

F M Gorzio, Department of Cardiothoracic Surgery, St Luke’s Hospital and Health Network

Correspondence to: Stephen A Olenchock, Jr, DO, St Luke’s Hospital, Department of Surgery, 801 Ostrum Street, Bethlehem, PA 18015, USA; olenchock@pol.net

Accepted 20 November 2002

IMAGES IN CARDIOLOGY

Submitral aneurysm: unusual echocardiographic features

A 20 year old man presented with dyspnoea on exertion class III. Clinically he was diagnosed to have severe mitral regurgitation, possibly caused by rheumatic heart disease. The x-ray revealed cardiomegaly with left atrial enlargement, and pulmonary venous and arterial hypertension. The ECG suggested left atrial overload with left ventricular hypertrophy.

He underwent transthoracic two dimensional echocardiography with colour Doppler study which revealed multilobulated cystic spaces in the left atrial cavity, with colour flow within these. The mitral valve was thin and there was severe mitral regurgitation. To define the anatomy further, transoesophageal echocardiography was performed which demonstrated cystic structures as before (below left). A communication between the left ventricle and one of these cysts was clearly seen just below the posterior mitral leaflet (below centre). A to-and-fro flow was seen on colour Doppler. With these findings the patient was diagnosed as having a submitral aneurysm of the left ventricle with severe mitral regurgitation. On cardiac catheterisation, there was moderate pulmonary arterial and pulmonary venous hypertension. Left ventricular angiogram in right anterior oblique view demonstrated filling of a multilobulated structure, close to the left atrium (below right). Severe mitral regurgitation was also confirmed.

Submitral aneurysm is a rare cardiac pathology mostly seen in African countries, particularly in the black population. It is considered to be a false aneurysm caused by a congenital defect in the posterior portion of the mitral annulus. Other aetiologies such as tuberculosis, Takayasu arteritis, and mitral valve endocarditis have been proposed. Although it can present rarely with life threatening complications such as ventricular tachycardia caused by compression of the left main coronary artery, the most common presentation is as severe mitral regurgitation.

Echocardiography usually shows it as a subpericardial echo-free space below the mural leaflet of the mitral valve, which communicates with the ventricular cavity. Our case presented with interesting echocardiographic features, not reported previously.

A Mohanty

anitasaxena@hotmail.com

Transoesophageal echocardiogram in four chamber view showing multiple cyst-like structures in the left atrium. LV, left ventricle; RA, right atrium; RV, right ventricle.

Transoesophageal echocardiogram in long axis view demonstrating the communication (arrow) of the left ventricle with the submitral aneurysm. An, aneurysm.

Left ventricular angiogram in right anterior oblique view showing filling of the lobulated submitral aneurysm and severe mitral regurgitation.