Multidetector CT coronary angiography: have we found the holy grail of non-invasive coronary imaging?

P M Donnelly, J D S Higginson, P D Hanley

Is technology about to deliver on the long awaited goal of effective non-invasive methods for visualising and assessing coronary arteries?

The investigation and treatment of coronary disease continues to impose a significant burden on health service resources. Stress testing may help select patients who require coronary imaging, but invasive coronary angiography remains the gold standard for the investigation of suspected coronary disease. However, it can detect only advanced relatively stable atheroma causing obstruction of the coronary lumen. It is invasive, with a small associated morbidity and mortality, resource intensive, and inconvenient for patients. Some 40% of studies require no further intervention after exposing patients to the unnecessary procedure risks. Consequently there has been a search for alternative non-invasive methods of visualising and assessing coronary arteries, giving information about the total plaque burden and the presence or absence of significant coronary stenoses. Developments in cardiac computed tomography (CT) as a new diagnostic tool may allow us to achieve these highly desired goals.

TECHNICAL CONSIDERATIONS

Successful CT coronary artery imaging demands a high temporal and spatial resolution. The former is required to virtually freeze cardiac motion and the relative movement of the coronary arteries in the diastolic phase of the cardiac cycle. Assuming a heart rate of 60 beats/min the total diastolic period would not exceed 330 ms. A high spatial resolution is necessary because coronary arteries are small and tortuous, usually no more than 4 mm at origin and less than 1 mm distally. These prerequisites demand technology with a high specification which has only recently become available.

HISTORICAL BACKGROUND

Cardiac CT developments followed those in electron beam computed tomography (EBCT). EBCT uses a prospective gating method to image at one point only in the cardiac cycle. Its high temporal resolution and ECG synchronised gating made it feasible to image the beating heart. However, the poor spatial resolution, high cost, and inaccessibility has limited its use to a few centres.

16 MDCT

A new generation of scanner with 16 detector channels (16 MDCT) is now available with a 0.38–0.42 s gantry rotation time, and a detector width of 0.5–0.75 mm. This means improved temporal and spatial resolution, achieving near isotropic imaging and faster scan times. Improved reconstruction algorithms and reduced breath hold requirements also contribute to better coronary image quality.

Initial reports of the usefulness of 16 MDCT in the detection of coronary stenoses suggest sensitivities of 70–95% and specificities of 86–98% (excluding non-assessable segments). The number of patients included in these studies ranged from 33–128 and up to 16% of segments were excluded from analysis mostly because of “bloom” artefact from coronary calcium. This is similar to our own experience of 200 patients comparing MDCT with conventional angiography.

PROTOCOL FOR CONTRAST ENHANCED MDCT

A preliminary scan without contrast injection may be performed to determine the total calcium burden (calcium score) of the coronary tree. Some investigators suggest that Agatson calcium scores above 1000 in 16 MDCT scanning are an indication for not proceeding with a contrast injection.

Abbreviations: CT, computed tomography; EBCT, electron beam computed tomography; MDCT, multidetector computed tomography; PET, positron emission tomography; SPECT, single photon emission computed tomography
enhanced scan. However, in our institution useful imaging of coronary arteries not affected by calcium artefact may still be obtained in this subgroup. Using a table feed of 5.7–6.8 mm/s (determined by heart rate and the pitch of scan), tube current 400–500 mAs, and tube voltage of 120–140 kv (determined by patient size), non-ionic contrast media containing 300 mgI/ml is injected via an antecubital vein. The scan is triggered automatically when the concentration of contrast in the ascending aorta reaches 150 Hu. The entire heart volume from aortic root to diaphragm is scanned within a single breath hold (20 s). Total examination time (door to door) is 15 minutes.

IMAGE RECONSTRUCTION

Raw data reconstruction requires a further 15 minutes before coronary segmental analysis is performed. Contrast enhanced MDCT allows the acquisition of several hundred images from adjacent transaxial submillimetre overlapping slices. These are reconstructed using a retrospective ECG gating technique that facilitates data selection at a specific phase of least coronary motion within the cardiac cycle—for example, 80% of R–R interval. Image evaluation is performed at a dedicated workstation. Post-processing allows display of coronary images in various formats. “3D volume rendered images” of the heart are impressive (fig 1) and demonstrate the course of the coronary arteries, including anomalous coronary arteries and bypass grafts, but are of limited value in the detection of coronary stenoses. Evaluation of coronary stenoses is best from axial images (fig 2). “Multiplanar reconstructions” are made by navigation through a dataset of axial images for each coronary artery. Assessment of coronary arteries is based on two dimensional reconstructions of the vessel in at least two orthogonal planes (fig 3). “Curved multiplanar reconstructions” allow the tortuous course of a coronary artery to be displayed in a single image (fig 4). While multiplanar reconstructions are useful for short stenoses, longer coronary artery segments may be displayed in “maximum intensity projections” of greater thickness, but there is overlap from adjacent structures. Each coronary artery is analysed in a standard per segment model (American Heart Association coronary artery segments).

CORONARY CALCIUM

Coronary calcium is a reliable marker of atherosclerotic plaque burden and an independent predictor of cardiovascular events. MDCT can readily produce a “calcium score”, but while calcium is helpful in defining risk, its high attenuation values prohibit accurate interpretation of the coronary artery lumen. This dilemma can only be resolved with further improvements in spatial resolution and is a significant barrier to acceptance of CT coronary angiography as the investigation of choice, except perhaps in low and intermediate risk groups.

One approach suggested to overcome this difficulty is to perform a non-enhanced sub-second coronary calcium score before CT coronary angiogram. Patients with a high calcium score—for example, > 1000—and therefore at greatest risk of significant underlying obstructive disease would not undergo a CT angiogram and instead be referred for standard catheter angiography.
Radiation exposure

Another significant limitation of cardiac CT is the radiation exposure. At present, our own research group using 16 MDCT have found effective radiation dose to range from 6–13 mSv. This is in excess of a conventional coronary angiogram (3–5 mSv with no left ventriculogram). It would be difficult to justify this double exposure in all patients, many of whom require subsequent coronary catheterisation. Manufacturers are currently assessing ways of reducing radiation exposure. One such method is tube dose modulation (ECG pulsing) using a high tubular current and voltage only during the period of data acquisition.

Future role

MDCT will become increasingly available in district general hospitals as CT scanners are upgraded. This accessibility, the rapid scan times, and lack of patient hospitalisation make it an exciting prospect for diagnostic cardiology, especially when there is no “on site” catheter laboratory. It is establishing itself as a robust imaging modality that accurately identifies plaque burden, coronary artery anomalies, coronary and pulmonary venous anatomy, and the patency of coronary artery bypass grafts (fig 5). The patency of coronary stents may be demonstrated in some patients (fig 4) without the artefact of 4 MDCT scanners but spatial resolution remains an issue.

Early work in select patient groups assessing coronary artery stenoses, plaque morphology, and cardiac function is promising.

References

Biventricular involvement in cardiac sarcoidosis

A 50 year old woman was admitted to our department to undergo an assessment of recurrent wide QRS tachycardia. An electrophysiologic study was performed. Ventricular tachycardia (VT) of three different morphologies, with left and right bundle branch block configurations, were induced with double extrastimuli from the right ventricle (left panel), thus suggesting that arrhythmogenic substrates existed in both the right and left ventricles. Endocardial mapping study showed that the site of earliest activation was found around the lower right ventricular outflow tract in VT 2. A thallium-scintigram showed a low uptake of agent from the anterior wall to the basal septum wall (panel A). Gadolinium enhanced magnetic resonance imaging (MRI) (T1) showed myocardial hyperenhancement in not only the left ventricular anteroseptum but also in the right ventricle (panel C). Non-caseating epithelioid granuloma with multinuclear giant cells and intracytoplasmic inclusions were detected in a right ventricular endomyocardial biopsy (panel B). We diagnosed cardiac sarcoidosis and administered prednisolone acetate and amiodarone. Recent reports have demonstrated cardiac sarcoidosis to affect not only the left ventricle but also the right ventricle. Although thallium-201 myocardial scintigrams have been proposed as a non-invasive diagnostic tool for detecting cardiac sarcoidosis, detecting abnormalities in the right ventricle using thallium-201 scintigraphy tends to be difficult. In the present patient, gadolinium enhanced MRI showed myocardial hyperenhancement in the culprit lesion of the VT in the right ventricle, as demonstrated by the electrophysiological study, thus suggesting that gadolinium enhanced MRI is a useful tool for detecting cardiac sarcoidosis involving both left and right ventricular infiltration.

Y Nakada
T Date
S Mochizuki
date@jikei.ac.jp

Panel A: rest myocardial thallium-201 scan (short axis) showing a clear anteroseptal defect. Panel B: biopsy specimen of endocardial tissue revealing many non-caseating granulomas with asteroid giant cells. Panel C: magnetic resonance imaging examination with a short axis view (gadolinium-DTPA delayed enhanced T1 weighted image) showing myocardial hyperenhancement in the anteroseptal wall of the left ventricle and part of the right ventricle wall.

ECG at baseline (SR) and during the tachycardia (VT 1–3), revealing a first degree atrioventricular (AV) block with sinus rhythm and ventricular tachycardias of three different morphologies with left and right bundle branch block configurations, respectively. VT, ventricular tachycardia; SR, sinus rhythm.