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Both hereditary and environmental factors contribute to
inter-individual variability in drug response. The
considerable interest in the role of genes has to be
balanced with the contribution of external influences.
Warfarin provides a useful case study of the need to
integrate both genetic and non-genetic information when
selecting the right dose for a patient. This article discusses
the latest data on genotype and warfarin sensitivity and the
efforts to incorporate this information into normograms.
Exploring the genetics of warfarin response will lead not
only to safer prescribing but elucidate the mechanism of
action of warfarin and enable the development of new
anticoagulant drugs.
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P
harmacogenetics—the use of genetic infor-
mation to inform the prescribing of drugs—
has caught the imagination of clinicians,

scientists, and patients alike. It promises greater
precision in prescribing, where treatment is
tailored to the individual, improving the chances
of therapeutic response and reducing the risk of
harm. While this is highly desirable, it is
important not to lose sight of the fact that
environment and behaviour also influence the
effect of a drug. At best, genotype will be only
one of a number of factors that need to be
considered when prescribing for a patient.
Warfarin provides a good illustration of the
complex interplay between genes and environ-
ment in determining patient response and the
practical issues in delivering on personalised
medicines.
Warfarin is currently the most widely used oral

anticoagulant in the world.1 Individual response
to the drug is highly variable. In a given
population, prescribed doses can vary from
1–40 mg or more daily. Importantly, the ther-
apeutic index in any one patient is very narrow.
Patients are monitored closely using the inter-
national normalised ratio (INR) for prothrombin
time but this adds expense and the incidence of
bleeding complications, estimated at 7.6 to 16.5
per 100 patient years, remains high. The period
of highest risk of bleeding complications is
around the start of warfarin treatment.2 3 In an
ideal setting, the physician would like to predict
the dose required for each patient without the
need for trial and error.

WARFARIN SENSITIVITY
As any medical student will recall, many clinical
and behavioural factors influence the response to
warfarin and need to be considered when

prescribing the drug. These include diet, alcohol
intake, body mass, concomitant drug treatment,
co-existing disease, and patient compliance.
Genes are also important. The first gene affecting
warfarin sensitivity to be identified was CYP2C9.
This gene encodes the enzyme (CYP2C9) respon-
sible for metabolising the pharmacologically
more potent S-enantiomer of warfarin to inactive
metabolites.4 A least six single nucleotide poly-
morphisms (SNPs) of CYP2C9 have been found
which may influence enzyme activity.5 Studies
show that the 2C9*2 and 2C9*3 variants have
12% and 5% of the enzyme activity of the wild-
type allele, 2C9*1,6 7 and that patients with these
variant alleles require significantly lower doses of
warfarin than patients with the wild-type gene,
with evidence of a gene–dose effect (such that
homozygotes are more sensitive than heterozy-
gotes).8–11 These variants are associated with a
significantly increased risk of bleeding during
induction of anticoagulation with warfarin,12 13

but not during maintenance.9

WARFARIN RESISTANCE
At the other end of the spectrum, inherited
resistance to warfarin is well recognised in rats,
mice, and humans.14 Warfarin acts by inhibiting
the enzyme vitamin K epoxide reductase
(VKOR). This enzyme recycles vitamin K epoxide
to reduced vitamin K (fig 1). The latter is
oxidised back to vitamin K epoxide in a coupled
reaction that causes carboxylation and activation
of the coagulation factors II, VII, IX, and X (the
so called ‘‘vitamin K dependent clotting factors’’
which make up the intrinsic coagulation path-
way). Until this year, little was known about
VKOR as it had been only partially purified and
its gene had not been identified. In an elegant
series of experiments using family linkage
studies and rodent genetics, two groups have
identified a gene (termed vitamin K epoxide
reductase complex subunit 1 or VCORC1) with a
central role in determining VKOR activity.15 16

VKOR was thought to be a large multicomplex
protein, but expressing the product of VKORC1
alone bestowed VKOR activity in insect cells that
did not have it while targeted inhibition of
VCORC1 expression with small interfering RNAs
notably reduced VKOR activity. Thus, this
molecule alone may be responsible for recycling
vitamin K. Missense mutations in this gene
appear to explain inherited warfarin resistance in
humans and rats.15 16

IMPLICATIONS FOR WARFARIN
PRESCRIBING
How might this genetic information influence
our use of warfarin? In general terms, the value
of genotyping a patient for a given variant
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depends upon the frequency of the allele, the mode of effect
(autosomal dominant/recessive), the size of the gene effect,
and cost.17 Inactivating CYP2C9 alleles are not uncommon,
being found in 35% of the white population.9 11 18 At least
three studies have explored the contribution of genotype
alone and together with demographic and clinical factors to
determining the maintenance dose of warfarin.10 11 19 In
univariate analyses, CYP2C9 genotype alone appears to
account for between 10–20% of the variability in main-
tenance dose of warfarin. Taking genotype along with factors
such as age, body surface area, sex, and concomitant drug
use, explained between 29–39% of the variability in warfarin
dose. Gage and colleagues10 have devised a normogram, using
genotype and other factors available at the time of starting
treatment with warfarin, to estimate warfarin requirements
before commencing treatment and argue that its use would
reduce the risk of bleeding around the time of initiating
anticoagulation with the drug. They concede that it would
not eliminate the need for INR monitoring and recognise that
use of the normogram needs to be evaluated for cost
effectiveness in a prospective study.
Conversely, heredity resistance to warfarin is rare. Whether

there are common polymorphisms of VKORC1 with signifi-
cant effects on warfarin sensitivity in the general population
is now the subject of further study.20 For the present, routine
genotyping for VKORC1 variants is not indicated. It would be
of diagnostic value when a patient appears to require a
particularly high dose of warfarin; the demonstration that
the patient had genetically determined resistance would
indicate the need for an anticoagulant with a different mode
of action.

DEVELOPING BETTER DRUGS
But there is more than one gain from pharmacogenetic
studies of this sort. Pharmacology can inform disease
genetics and genetic strategies can lead to the development
of better drugs. In this case, VKORC1 allelic variants are not
only responsible for warfarin resistance but can also give rise
to hereditary deficiency of vitamin K dependent clotting
factors.15 Meanwhile, clarifying the molecular target for
warfarin permits more detailed study of the structure and
function of this enzyme and the possibility of new
pharmacological inhibitors, ideally with different kinetics
and less inter-individual variability.
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Figure 1 Cyclical reduction and oxidation of vitamin K is inhibited by
warfarin. Dietary vitamin K is reduced to vitamin K hydroquinone by
vitamin K reductase. Vitamin K hydroquinone is then oxidised to vitamin
K epoxide in a coupled reaction which results in the activation of
coagulation factors II, VII, IX, and X. Vitamin K epoxide is then reduced
back to vitamin K by vitamin K epoxide reductase (VKOR). This enzyme
is inhibited by warfarin, leading to a block in the cycle, which results in a
depletion in activated clotting factors.
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