plasmas. Growth factors and inflammatory cytokines are potential serum biomarkers to identify patients at risk of stroke.

Materials and methods Immunohistochemistry and quantitative PCR (Q-PCR) were used to establish localisation and expression of angiogenic growth factors within carotid endarterectomy specimens from symptomatic and asymptomatic patients. Stable or unstable microvessels were distinguished by CD31 and CD105 staining. Systemic levels of circulating angiogenic growth factors and inflammatory cytokines were measured in venous blood using Bio-Plex arrays.

Results Hepatocyte growth factor (HGF) and its receptor c-Met were detected in CD31-positive endothelia, and α-SMA-positive cells, respectively. Q-PCR demonstrated upregulation of the angiogenic factors CD105, HGF (p<0.001) and c-Met (p=0.011) in symptomatic versus asymptomatic plaques. A significantly greater neovessel density was detected in symptomatic plaques (p=0.042), associated with elevated expression of HGF and c-Met. Suspension arrays demonstrated elevated HGF (p=0.002) and decreased platelet-derived growth factor (PDGF; p=0.056) serum levels in symptomatic versus asymptomatic patients. Twenty-seven cytokines were examined; seven endarterectomy patients demonstrated significantly increased levels in comparison with controls. No differences were observed between preoperative and postoperative serum.

Discussion Plaque instability may be mediated by HGF-induced formation of microvessels, and decreased PDGF. We will investigate the effects of inflammatory cytokines with a view to comparing symptomatic versus asymptomatic patients. Targeting surgery to those who will benefit would eliminate unnecessary risk.

Partial reconstruction of myocardial metabolic pathways following analysis of peripheral serum using metabolomics in early cardiac ischaemia

doi:10.1136/hrt.2010.205781.14

1M A Mamas, 2W B Dunn, 3D Broadhurst, 4S Chacko, 5M Brown, 6M El-Omar, 7F Fah-Oordouba, 8Y Goodacre, 9D B Kel, 10L Neyses. 1Biomedical Research Centre, Central Manchester NHS Foundation Trust, UK; 2Manchester Centre for Integrative Systems Biology, University of Manchester, UK; 3Biomedical Sciences Group, Manchester Interdisciplinary Biocentre, University of Manchester, UK.

Cardiac metabolism and cardiac function are inextricably linked, with changes in cardiac metabolism during cardiac ischaemia contributing to the development of cardiac arrhythmias. Using metabolomics, we aim to identify metabolite changes occurring during cardiac ischaemia through analysis of peripheral serum to reconstruct myocardial metabolic pathways that contribute to the development of cardiac arrhythmias. Peripheral venous samples from 25 patients (and 20 patients in a validation cohort) were analysed in an untargeted fashion using LC-MS following cardiac ischaemia induced by transient coronary artery occlusion during PCI at baseline, 1 and 5 min. Following validation, 99 and 126 metabolite peaks were significantly different at 1 min and 5 min after coronary occlusion compared with baseline (p<0.05). Predominantly metabolic pathways involving lipids were perturbed with changes in diacylglycerols (DG), lysophosphatidylcholines (LPC), phosphatidylcholine (PC) and free fatty acids (FFA). Myocardial metabolic pathways involving the synthesis of PC from DG and their subsequent breakdown by phospholipase A2 into LPC and FFA such as arachidonic acid (AA) stimulating the oxidation of adrenaline to form the arrhythmogenic metabolite adrenochrome were reconstructed. We are able to reconstruct metabolic pathways involving lipid metabolism within the myocardium during cardiac ischaemia through analysis of the peripheral serum using metabolomics. Our unbiased approach has identified metabolic pathways involved in the production and release of metabolites with pro-arrhythmic properties (omega-3 fatty acids: eicosapentaenoic and docosahexaenoic acid). This suggests that arrhythmogenesis may be a delicate balance between the endogenous formation of pro-arrhythmic and anti-arrhythmic metabolites.

Tilrr potentiates interleukin-1-induced anti-apoptosis

doi:10.1136/hrt.2010.205781.16

Gemma Montagut Pino, Xiao Zhang, Eva Qwarnstrom. Cell Biology, Vascular Science, University of Sheffield, UK.

The pathogenesis of atherosclerosis is determined, in part, by inflammatory responses, induced through members of the Toll-like and interleukin (IL)-1 receptor family and controlled by NF-κB. We have identified a novel IL-1RI co-receptor, TILRR, which enhances the IL-1-induced activation of NF-κB by increasing receptor-expression enhanced recruitment of the MyD88 adaptor during activation. Here we investigate the role of TILRR on the anti-apoptotic effects controlled by NF-κB. The results showed that TILRR reduces caspase-3 activity and enhances IL-1-induced phosphorylation of AKT. Alkaline scanning mutagenesis of the IL-1 receptor TIR domain demonstrated that TILRR amplifies inflammatory responses through the membrane proximal part of the cytoplasmic portion, the so-called box 1, while the anti-apoptotic response is regulated through the central portion of the TIR domain, the so-called box 2. Similarly,
Heart failure is often associated with renal impairment (cardiorenal syndrome). Using a metabolomics approach, our group identified α-ketoglutarate as a novel metabolite that was significantly elevated in patients with heart failure. It was as strongly associated with heart failure as the ‘gold-standard’ biomarker brain natriuretic peptide. α-Ketoglutarate is a citric acid cycle intermediate, central in cardiac energy production. It is the ligand of GPR99, a G protein-coupled receptor mostly expressed in the kidney. In HEK 293 cells, GPR99 acted through a Gq-mediated pathway to increase intracellular calcium. Importantly, we found that the GPR99 receptor is present in neonatal rat cardiomyocytes (NRCM). We tested the expression of 84 genes previously known as regulators of angiogenesis in NRCM treated with 1 mM α-ketoglutarate. Using real-time PCR, we found significant increase in the expression of VEGF receptor-1 and placental growth factor, suggesting a possible effect of α-ketoglutarate in the regulation of angiogenesis and growth. These findings show that binding of α-ketoglutarate to the GPR99 receptor in the heart leads to activation of the Gq pathway and causes upregulation of VEGFR1 and placental growth factor. This might have a role in vascular adaptation to hypertrophy. In addition, in vivo animal studies have previously shown that protein kinase C has a role in renal dysfunction. This leads to the novel and testable hypothesis that α-ketoglutarate also contributes to the development of the cardiorenal syndrome.

REFERENCES


BAS/BSR8

α-KETOGLUTARATE: BIOLOGICAL EFFECTS OF A NOVEL BIOMARKER OF HEART FAILURE

doi:10.1136/hrt.2010.205781.17

T Nikolaidou, M Marmas, D Oceandy, L Neyses. Cardiovascular Medicine, School of Biomedicine, University of Manchester, Manchester, UK

Foam cell macrophage (FCM) formation is an early event in atherosclerosis that precedes both fibrous cap development and subsequent cap rupture; FCM have been implicated in both events. To understand this further we compared the transcriptomes of FCM and non-foamy macrophages (NFM) produced in subcutaneous sponges implanted into fat-fed ApoE null or C57Bl6 mice, respectively (n=4 each). RNA samples of high quality by A260/280>2 were compared on Illumina bead chips. Differential expression was classified as significant (p<0.05 after Bonferroni correction for multiple testing) or suggestive (p<0.001 unadjusted). 62 genes were significantly upregulated and 59 downregulated in FCM compared with NFM. A total of 570 and 381 genes were upregulated and downregulated using the more relaxed criterion. Fold changes confirmed by quantitative RT-PCR (n=5–7) included upregulation of cathespin C (15×), cathespin E (19×), matrix metalloproteinase (MMP)-2 (18×) and MMP-23 (22×) but also upregulation of tissue inhibitor of matrix metalloproteinase (TIMP)-2 (4×) and TIMP-3 (8×) and downregulation of MMP-13 (5×). Surprisingly, several matrix proteins were significantly upregulated, including collagen Iα1 (55×) and VTNα1 (51×), osteonectin (72×) and biglycan (19×), although thrombospondin declined (2×). Hence our genomic analysis demonstrated changes that could lead to both matrix degradation and deposition. Ingenuity pathway analysis implicated activation of LXR/RXR in FCM, in agreement with other literature, and highlighted responses to platelet-derived growth factor and transforming growth factor β. The hypothesis that interaction of these pathways accounts for the ambiguous behaviour of FCM in matrix remodelling deserves further investigation.

Contributors A C Thomas, J L Johnson and W J Eijgelaar are contributed equally.

REFERENCES


BAS/BSR6

REFERENCES


BAS/BSR7

DEMONSTRATION OF GENE EXPRESSION WITHIN A THROMBUS: FURTHER REGULATION OF THE HAEMOSTATIC RESPONSE

doi:10.1136/hrt.2010.205781.18

J R Wright, P Ellis, C Langford, N A Watkins, W H Ouwehand, A H Goodall. 1Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; 2Department of Haematology, University of Cambridge, Cambridge, UK; 3Wellcome Trust Sanger Institute, Hinxton, UK

Vascular injury and plaque rupture activate the haemostatic response, resulting in the formation of a thrombus comprising platelets, red cells and leucocytes, incorporated into a mesh of plasma proteins. Whether cells within the thrombus act simply as structural and secretory components, or have a more active role involving gene expression is unclear. To investigate this, thrombi were produced at 37°C in a Chandler loop, using re-calcified citrated blood from healthy donors (n=6). The thrombi were removed after 2, 4 and 6 h of rotational incubation, and homogenised to extract total RNA. Following in vitro transcription, samples were hybridised to Illumina WG6 beadchips, and data normalised using Illumina Beadstudio. Differences in gene expression were assessed using a Student t test, applying fdr2d correction to eliminate false positives (R Bioconductor). Genes which demonstrated significant (>|twofold) time-dependent increases included genes encoding proteins involved in chemotaxis (IL8, CCL2, CXCL1, CXCL2, CXCR4), cell adhesion (ITGAV, ITGAV, ITGB1, ALCAM), regulation of coagulation (THBD, PLAU, SERPING1, ANX5A), and wound healing (TGM2, ENDG, SPP1, LAMBS, PTGS2, TNFAP6) and regulatory transcription factors (FOs, BMP6, IRAK2, KLRG1, PPARG). Whereas initiation of thrombosis is driven by plasma proteins and facilitated by the platelet surface, this study provides evidence that thrombus resolution may be driven by changes in gene expression within the thrombus that regulate the haemostatic response, thrombus growth and facilitate wound healing. This finding could have implications for individuals at risk of plaque rupture, where variation in gene expression may affect not just the formation of an occlusive thrombus but also the rate of resolution.

REFERENCES


BAS/BSR8

DOES MACROPHAGE FOAM CELL FORMATION PROMOTE EXTRACELLULAR MATRIX FORMATION OR DEGRADATION? A GENOMIC STUDY

doi:10.1136/hrt.2010.205781.19

A Thomas, J L Johnson, W J Eijgelaar, M J A P Daemen, A C Newby. 1Bristol Heart Institute, Bristol, UK; 2CARIM, Maastricht, Netherlands

Heart: first published as 10.1136/hrt.2010.205781.16 on 26 August 2010. Downloaded from http://heart.bmj.com/ on October 20, 2023 by guest. Protected by copyright.