Family history of premature coronary heart disease and risk prediction in the EPIC-Norfolk prospective population study

Suthesh Sivapalaratnam,1,2 S Matthijs Boekholdt,1,2 Mieke D Trip,1,2 Manjinder S Sandhu,3,4 Robert Luben,3 John J P Kastelein,1 Nicholas J Wareham,5 Kay-Tee Khaw3,2

ABSTRACT

Objective The value of a family history for coronary heart disease (CHD) in addition to established cardiovascular risk factors in predicting an individual's risk of CHD is unclear. In the European Prospective Investigation of Cancer (EPIC)-Norfolk cohort, the authors tested whether adding family history of premature CHD in first-degree relatives improves risk prediction compared with the Framingham risk score (FRS) alone.

Methods and results This study comprised 10,288 men and 12,553 women aged 40–79 years participating in the EPIC-Norfolk cohort who were followed for a mean of 10.9±2.1 years (mean±SD). The authors computed the FRS as well as a modified score taking into account family history of premature CHD. A family history of CHD was indeed associated with an increased risk of future CHD, independent of established risk factors (FRS-adjusted HR of 1.74 (95% CI 1.56 to 1.95) for family history of premature CHD). However, adding family history of CHD to the FRS resulted in a negative net reclassification of 2%. In the subgroup of individuals estimated to be at intermediate risk, family history of premature CHD resulted in an increase in net reclassification of 2%. The sensitivity increased with 0.4%, and the specificity decreased 0.8%.

Conclusion Although family history of CHD is an independent risk factor of future CHD, the use did not improve classification of individuals into clinically relevant risk categories based on the FRS. Among study participants at intermediate risk of CHD, adding family history of premature CHD resulted in, at best, a modest improvement in reclassification of individuals into a more accurate risk category.

INTRODUCTION

Coronary heart disease (CHD) is the leading cause of morbidity and mortality worldwide. Well-established risk factors include age, sex, smoking, hypertension, diabetes mellitus, obesity and dyslipidaemia. In addition, several prospective studies have shown that a family history of CHD is a risk factor independent of these traditional risk factors. Depending on the definition used, family history confers an relative risk (RR) for CHD that ranges from twice to 12 times that in the general population.3

There is conflicting evidence as to whether family history of CHD provides added value on top of established risk factors in predicting cardiovascular risk. According to the Adult Treatment Panel III (ATP III) guidelines, family history does not improve risk prediction sufficiently to be included in risk models.5 However, several risk scoring algorithms including Reynolds, PROCAM and QRISK do incorporate a family history of CHD, and ASSIGN does incorporate a family history of all CVD, but not CHD only.4–7 Interestingly, the frequently used Framingham Risk Score (FRS) does not take family history for CHD into account, but an analysis in the Framingham Offspring cohort concluded that sibling and parental CHD should be incorporated into risk prediction algorithms.8

In the prospective European Prospective Investigation of Cancer (EPIC)-Norfolk cohort, we tested the hypothesis that addition of family history of premature CHD in first-degree relatives improves risk prediction compared with the Framingham risk score algorithm alone.

METHODS

Study population and data acquisition

EPIC-Norfolk is a prospective cohort study among men and women aged 40–79 years recruited from general practices in the Norfolk region, UK. The EPIC-Norfolk study was approved by the Norfolk Local Research Ethics Committee and complies with the Declaration of Helsinki. Participants gave written consent. Full details of the population are reported elsewhere.9 In brief, between 1993 and 1997, 25 639 individuals underwent a baseline health examination (anthropometry, blood pressure, non-fasting lipid levels) and completed a general health questionnaire (history of disease, including diabetes, heart attack and stroke, medication use and smoking habits). In addition, they were asked about family history for heart attack in first-degree relatives. The study cohort was similar to UK population samples with regard to many characteristics, including anthropometry, blood pressure and lipids, but with a lower proportion of smokers.5

All EPIC-Norfolk participants were flagged for death certification at the Office for National Statistics, and vital status was obtained for the entire cohort. Participants admitted to a hospital were identified by their National Health Service number. Hospitals were linked to the East Norfolk Health Authority database, which identifies all hospital contacts throughout England and Wales for Norfolk residents. Participants were identified as having a CHD event (eg, unstable angina, stable
angina and myocardial infarction) during follow-up if CHD was
the underlying cause of a hospital admission or death. Previous
validation studies in this cohort indicate a high specificity of
such case ascertained.10

In our analysis, those participants of the EPIC-Norfolk cohort
who did not report a heart attack or stroke at baseline were
included. We report the results of follow-up to 30 April 2009,
a mean of 10.9±2.1 years.

Statistical analysis
Baseline characteristics were compared between people with
and without a family history of premature CHD. A Student t
was used for continuous variables (age, body mass index, waist
circumference, waist/hip ratio, systolic and diastolic blood
pressure, total cholesterol, low-density lipoprotein (LDL)
cholesterol, high-density lipoprotein (HDL) cholesterol) a χ2
was used for categorical variables (sex, smoking status, diabetes
mellitus). Because triglycerides and the FRS were not normally
distributed, these parameters were log-transformed. The log-
transformed variables were normally distributed and were
compared using a Student t test.

The Framingham risk score was calculated using a previously
reported algorithm, which takes into account age, sex, total
cholesterol, HDL cholesterol, systolic and diastolic blood
pressure, smoking and the presence of diabetes. Since the FRS
overestimates CHD risk in Europeans, and more specifically in
the EPIC-Norfolk study population, we recalibrated the FRS as
previously described.17

Study participants were divided into three categories
according to family history of CHD in a first-degree relative:
negative family history, positive family history of premature
CHD defined as CHD in a first-degree male relative <55 and
female relative <65 years of age and a family history above these
cut-offs. For all Cox proportional regression model (Cox regres-
sion) analyses, the reference group consisted of participants with
a negative family history. Cox regression was used to calculate
hazard ratios (HRs) and corresponding 95% CI (95% CI) for the
risk of future CHD in each category. For each of these categories,
the unadjusted, sex-, age- and FRS-adjusted HRs were calcu-
lated. Similar analyses were performed for participants with
positive premature family history of CHD only among siblings
and only among parents. Men and women with both parental
and sibling CHD were excluded from these analyses.

We quantified whether using a family history of premature
CHD in addition to the FRS resulted in improved classification
of study participants into low-, intermediate- and high-risk
categories, as previously described.12 Reclassification of study
participants who did and did not develop CHD during follow-up
was analysed separately. Any ‘upward’ movement in categories
for study participants who did develop a CHD event implies
improved classification, and any ‘downward’ movement indi-
cates worse reclassification. The interpretation is opposite for
those who did not develop a CHD event.12 Improvement in
reclassification was estimated by taking the sum of differences
in proportions of individuals reclassified upward minus the
proportion reclassified downward for individuals who developed
events and the proportion of individuals moving downward
minus the proportion moving upward for those who did not
develop events. Using this method, the overall reclassification
sum is the net reclassification improvement. This approach was
used in the entire study sample, and in addition only in the
group estimated to be at intermediate risk by the FRS, also
known as the clinical net reclassification improvement.

Finally, we calculated sensitivity defined as the ability to
classify as high risk someone who subsequently develops CHD’
and specificity as the ability to ‘classify as low risk someone who
does not subsequently develop CHD.’

Analyses were performed using SPSS (version 15.0).

RESULTS
In total, 2798 out of the 25 639 EPIC-Norfolk study participants
were excluded because they reported CHD or stroke at baseline,
leaving 22 841 individuals for the current analysis (10 288 men
and 12 553 women). During follow-up 2752 participants (12.0%)
experienced a CHD event. In table 1, baseline characteristics and
the calculated FRS are presented for the study participants
classified according to whether they developed CHD during
follow-up and whether or not they had a family history of
premature CHD. Among individuals who did not experience
CHD during follow-up, systolic and diastolic blood pressure,
total cholesterol, LDL cholesterol and triglycerides were higher
in individuals with a positive family history of CHD. The mean

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Baseline characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No coronary heart disease during follow-up (n=20089)</td>
</tr>
<tr>
<td></td>
<td>Negative n=14866</td>
</tr>
<tr>
<td>Age (years)</td>
<td>57±9</td>
</tr>
<tr>
<td>Male sex</td>
<td>42.1 (6257)</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>26.1±3.8</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>87±12</td>
</tr>
<tr>
<td>Waist/hip ratio</td>
<td>0.85±0.09</td>
</tr>
<tr>
<td>Current smoking</td>
<td>11.7 (1735)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>1.4 (211)</td>
</tr>
<tr>
<td>Systolic blood pressure (mm Hg)</td>
<td>134±18</td>
</tr>
<tr>
<td>Diastolic blood pressure, (mm Hg)</td>
<td>82±11</td>
</tr>
<tr>
<td>Total cholesterol (mmol/l)</td>
<td>6.1±1.1</td>
</tr>
<tr>
<td>Low-density lipoprotein cholesterol (mmol/l)</td>
<td>3.9±1.0</td>
</tr>
<tr>
<td>High-density lipoprotein cholesterol (mmol/l)</td>
<td>1.4±0.4</td>
</tr>
<tr>
<td>Triglycerides (mmol/l)</td>
<td>1.5 (1.0 to 2.1)</td>
</tr>
<tr>
<td>Framingham Risk Score</td>
<td>17.1 (3.0 to 23.8)</td>
</tr>
</tbody>
</table>

Data are presented as a percentage (number), mean±SD or median (IQR).
FRS was also higher in this group. Among individuals who did experience CHD during follow-up, similar differences were not observed.

Table 2 depicts the unadjusted and adjusted HR of incident CHD for individuals with a family history of CHD compared with those without. A subdivision was made according to the age at which the first-degree relative had CHD. Compared with study participants without a family history for CHD, those with a first-degree relative with premature CHD had a FRS-adjusted HR of 1.74 (95% CI 1.56 to 1.95), whereas in those with non-premature CHD, the HR was 1.50 (95% CI 1.20 to 1.41). Lower age cut-off values did not change these results substantially.

Hazards associated with sibling CHD were not influenced by the age of onset in the first-degree relative (table 2). Only premature parental disease was associated with increased risk for CHD (table 2). Results were similar for men and women, and there was no evidence for a statistically significant interaction between sex and family history status (data not shown).

There was an inverse association between the age of onset of CHD in the first-degree relative and the study participant’s risk of CHD (figure 1). Reclassification analyses for men and women are summarised in figure 2. The use of family history of premature CHD resulted in 162 individuals being correctly reclassified into a higher-risk category, as compared with the FRS alone. A total of 178 individuals were incorrectly reclassified into a lower-risk category. Similarly, 1197 individuals who did not develop CHD during follow-up were correctly reclassified into a lower category, whereas 1477 individuals were incorrectly reclassified into a higher category. The net effect was incorrect classification in 280 cases. The net reclassification improvement was −2.0%. This indicates that, as a result of adding family history of premature CHD to FRS, 2.0% more individuals were moved into an incorrect direction than in a correct direction. Using a similar approach in the subgroup of individuals initially classified as intermediate risk using the FRS, 106 individuals were correctly reclassified into the high-risk category, and 1477 individuals were incorrectly reclassified into the low-risk category, whereas 787 individuals were correctly reclassified into the low-risk category, and 556 individuals were incorrectly reclassified into the high-risk category. Thus, in the intermediate-risk group, the use of family history of premature CHD resulted in a slight increase in clinical net reclassification improvement of 2.05%.

Among people who ultimately developed CHD, adding family history of premature CHD to the FRS increased the percentage that was correctly classified at baseline as high risk from 64.7% to 65.1%. Among people who did not develop CHD during follow-up, adding family history of premature CHD to the FRS decreased the percentage correctly classified as low-risk from 46.4% to 45.6%.

DISCUSSION

In the EPIC-Norfolk study, a family history of CHD was an independent risk factor for future CHD. The magnitude of risk was influenced by the age of onset of CHD in the first-degree relative. The effects were influenced by the age of onset of CHD in the first-degree relative, and the study participant’s risk of CHD (figure 1). Reclassification analyses for men and women are summarised in figure 2. The use of family history of premature CHD resulted in 162 individuals being correctly reclassified into a higher-risk category, as compared with the FRS alone. A total of 178 individuals were incorrectly reclassified into a lower-risk category. Similarly, 1197 individuals who did not develop CHD during follow-up were correctly reclassified into a lower category, whereas 1477 individuals were incorrectly reclassified into a higher category. The net effect was incorrect classification in 280 cases. The net reclassification improvement was −2.0%. This indicates that, as a result of adding family history of premature CHD to FRS, 2.0% more individuals were moved into an incorrect direction than in a correct direction. Using a similar approach in the subgroup of individuals initially classified as intermediate risk using the FRS, 106 individuals were correctly reclassified into the high-risk category, and 1477 individuals were incorrectly reclassified into the low-risk category, whereas 787 individuals were correctly reclassified into the low-risk category, and 556 individuals were incorrectly reclassified into the high-risk category. Thus, in the intermediate-risk group, the use of family history of premature CHD resulted in a slight increase in clinical net reclassification improvement of 2.05%.

Among people who ultimately developed CHD, adding family history of premature CHD to the FRS increased the percentage that was correctly classified at baseline as high risk from 64.7% to 65.1%. Among people who did not develop CHD during follow-up, adding family history of premature CHD to the FRS decreased the percentage correctly classified as low-risk from 46.4% to 45.6%.

Figure 1

Different categories (I–IV) based on the age of onset of coronary heart disease (CHD) in a first-degree relative, using the following age cut-offs in years: I, ≤ 55 in men and ≤ 65 in women; II, ≥ 55 and < 65 in men, and ≥ 65 and < 75 in women; III, ≥ 65 and ≤ 75 in men, and ≥ 75 and < 85 in women; IV, ≥ 75 in men and ≥ 85 in women. The reference group for the calculated ORs consisted of participants with a negative family history of CHD.
relative and whether the affected individual was a sibling or parent. Only premature parental CHD and any history of sibling CHD were associated with higher HRs. Adding family history of premature CHD to the FRS did not result in an overall increase in net reclassification improvement. There was only a marginal increase in sensitivity and decrease in specificity. In the subgroup of individuals estimated to be at intermediate risk using the FRS, addition of family history of premature CHD resulted in a slight classification improvement of 2%.

Several large cohort studies have reported an association between self-reported family history of CHD with an RR for CHD that ranges from twice to 12 times that of the general population depending on the definition used. Results after adjustment for other variables were not conclusive, with relative risks of CHD estimates still ranging from 0.8 to 2.2. Recently developed risk scores, such as the QRISK and the Reynolds risk score, have incorporated family history of CHD in their algorithms. The QRISK risk score was developed using data on more than 1 million non-diabetic individuals from general practice registers in the UK. The QRISK algorithm incorporates family history and social deprivation in addition to the risk factors used in the Framingham score and is reported to calibrate better in the UK population than the older Framingham risk functions formulated by Anderson et al. The Reynolds risk score for men was developed in a sample of the Physicians’ Health Study II, which included 10,724 initially healthy American non-diabetic men. Addition of hsCRP, diabetes and family history and social deprivation in addition to the risk factors used in the Framingham score and is reported to calibrate better in the UK population than the older Framingham risk functions formulated by Anderson et al. The Reynolds risk score for men was developed in a sample of the Physicians’ Health Study II, which included 10,724 initially healthy American non-diabetic men. Addition of hsCRP, diabetes and family history of premature CHD in a first-degree relative was found to be reasonably accurate with sensitivity above 80% and specificity about 90%.

A potential systemic error was the lack of information on pedigree size. The ability to have a positive family history is dependent on pedigree size. Unfortunately, we could not adjust for the total amount of siblings a study participant had. Finally, CHD events were identified by means of death certification and hospital admission reports, which may have resulted in misclassification. Previous validation in this cohort, however, indicated high specificity of such case ascertainment.

CONCLUSIONS

In this large population-based cohort, we confirm that family history is an independent risk factor for CHD. However, this information did not contribute to improve CHD risk prediction in the entire cohort. Only in the subgroup of individuals at intermediate risk of CHD as estimated by the FRS, did the use of family history of premature CHD result in a modest improvement in reclassification of individuals into a more accurate risk category.

Funding EPIC-Norfolk is supported by programme grants from the Medical Research Council UK and Cancer Research UK.

Competing interests None.

Patient consent Obtained.

Ethics approval Ethics approval was provided by the Norfolk Local Research Ethics Committee.
REFERENCES

