Methods 228 patients with acute coronary syndrome undergoing delayed percutaneous coronary intervention were randomly divided into standard statin group (SSG n=115) and intensive statin group (ISG n=113). Patients in SSG were given simvastatin 20 mg/day and patients in ISG were given simvastatin 80 mg/day for at least 7 days before PCI. Serum creatinine was measured at admission, 24 h and 48 h after PCI, and the Creatinine clearance was calculated. The levels of hs-CRP, ICAM-1 and P-selectin were also measured.

Results Serum creatinine underwent significant increase after PCI, the peak value occurred at 24h, and then began to decrease. At 24 h after PCI, the creatinine level significantly decreased (p<0.001) to baseline level in ISG, whereas in SSG the creatinine level failed to decrease significantly. Serum creatinine at admission was not significantly different between the two groups. But at 24h and 48h hour after PCI, it was lower in ISG than SSG (p<0.05 at 24h hour and p<0.001 at 48h hour). The creatinine clearance significantly decreased after PCI, the lowest value occurred at 24 h, and then it began to increase. In SSG, the creatinine clearance increased significantly (p<0.05) at 48 h, but still significantly lower than baseline level. In ISG, the creatinine clearance improved much more in ISG at 24 and 48 h than that in SSG (p<0.001 at 24th hour and at 48th hour). Although procedure caused significant increase in hs-CRP, P-selectin and ICAM-1 (p<0.001), the increase in ISG was smaller than SSC (p<0.001).

Conclusion Pretreatment with intensive statin dosage before PCI can further decrease the occurrence of CIN. This benefit may be associated with the lowering of hs-CRP, P-selectin and ICAM levels.

THE ANIMAL MODEL ESTABLISHMENT OF ACUTE CORONARY NO-REFLOW PHENOMENON IN YORK SWINE VIA INTRACORONARY INJECTION OF MICROSHERE WITH BLOOD SUSPENSION

Objective To explore the fusibility of establishing animal model of no reflow phenomenon in swine by super selecting LAD with 4F catheter, and injecting polyethylene microspheres and blood suspension (PMSB) into LAD.

Methods Total of 15 york swines were included in this study. CAG was performed by 4F micro-catheter technique, and PMSB was injected into the superselected LAD. The coronary blood flow was evaluated by TIMI frame counts and the level of myocardial tissues perfusion was evaluated by TMFG. The model of NRP of AMI was considered as success while TIMI blood flow being less than grade 2 or TFC more than 36.2 counts or TMPG less than grade 1. Left ventriculography was performed with 4F Pigtail and left ventricular systolic, diastolic pressure was recorded. MRAP, mRVF, mPAP and PCWP were measured by swan-ganz floating catheter, and CO was measured by thermodilution. ECG and blood pressure were monitored, and platelet aggregate ratio, CK-MB, TnI and blood gas analysis were measured. Ischaemic region, normal region and borderline were scissored respectively and sent to check for pathology, and the necrotic zone of myocardium was weighed and the percentage of which in left ventricle was calculated.

Results According to the standards of NRP, 11 animals achieved the NRP model of AMI successfully, achievement rate of the models was 75.3%. average times of injection of PMSB was 3.2±0.6. While the model of NRP was established, instant ECG showed that ST segment elevated and formed single-direction curve with high T wave, and R wave was gradually depressed. Though PO2 was decreased after establishment of NRP model, the level of which was in normal range. PAP, PCWP and LVEDP were increased at instantly, 30, 60, 120,