group (CG, n=52). Tirofiban was only administrated in the tirofiban group. Before the CAG, enough clopidogrel, aspirin and heparin be used in both groups. The MACE and the haemorrhage events were collected in each group during in-hospital. The lesion and reperfusion of the IRA and myocardial were analyses by QCA and TMPG. The platelet aggregation rate were recorded All patients received UCG 1 week and 24 weeks after PCI to evaluate the heart function.

Results
There was no significant differences in age, gender, risk factors, pre-angina, the location of the AMI, heart function, and the mean interval from onset to PCI between the two groups. A greater percentage of TIMI 1 flow of IRA was achieved in TG compared with the control group before PCI (p<0.05). The percentage of TIMI 3 flow of IRA after the guidewire first crossing was higher (p<0.05) in TG. The percentage of TIMI 3 flow in TG after PCI was higher than that in CG (p<0.05). The CTFC and slow-reflow phenomenon was fewer (p<0.05) in TG after PCI. The percentage of TMPG beyond 2 grade was higher in TG (p<0.05). The value of LVEF 1 week after PCI in TG was higher than that in CG (p<0.01). The platelet aggregation rate in TG was lower after tirofiban administration for 0.25, 0.5, 2, 6 and 12 h. There was no significant difference in haemorrhage events between the two groups. There was a lower incidence of MACE in TG compared with that in CG during in-hospital and follow up.

Conclusion
Intravenous administration of tirofiban can inhibit the platelet aggregation, improve the coronary flow of IRA, decrease the incidence of NRP in AMI patients performed PCI, which in turn will improve the heart function and decrease the incidence of MACE. Tirofiban can make more IRA patent before PCI, but do not increase the haemorrhage events.

THE EFFECT OF RECOMBINANT HUMAN B-TYPE Natriuretic Peptide on Coronary Circulation and Renal Haemodynamics in York Pigs Model of Acute Myocardial Infarction with Heart Failure

Fu Xianghua, Zhang Jing, Wang Xuechao, Wang Yanbo, Hao Guozhen, Fan Weize, Jiang Yunfa, The 2nd Hospital of Hebei Medical University, Shijiazhuang, Hebei, China

Objective
To evaluate the impact of intravenous administration of rhBNP on coronary and renal artery haemodynamics in York pigs model of AMI-ADHF

Methods
14 York pigs were included in this study. After the AMI-ADHF models were established, pigs were randimized into saline group and rhBNP group. Coronary pressure (Pc), the average peak velocity (APV), coronary vascular resistance (CR), coronary flow reserve (CFR) and coronary diameter were recorded simultaneously at baseline, instant after the model established, 60 min after continuous infusion of 0.01 mg·kg⁻¹·min⁻¹ rhBNP and the time point of LVEDP<12 mmHg. The blood flow of the coronary were measured at rest and maximal hyperaemia. Renal angiography was performed by 4F catheter and quantitative measurement of diameter was recorded by the computer assisting system. The average peak rate of renal artery (APVR) was recorded, determination of quantitative angiography of renal artery diameter, renal vascular resistance. LVEDP and LVEF was measured.

Results
1. Coronary artery diameter increased after rhBNP administration. APV and CBF were significantly increased and CR decreased after rhBNP administration. CFR was significant rebound after continuous infusion of 0.01 mg·kg⁻¹·min⁻¹ rhBNP for 30 min. APV and CBF significantly increased and CR significantly decreased at the stage of infusion 0.010 mg·kg⁻¹·min⁻¹ rhBNP in rhBNP Group. 2. Renal artery pressure was significantly lower after rhBNP administration. RhBNP exerts renal vasodilator effects in a dose related relationship. RBF increased gradually after administration of rhBNP and was significantly higher than control group. RVR decreased after administration of rhBNP. LVEF was lower than baseline after the models established and tended to increase after administration of rhBNP

Conclusion
It could increase blood flow of injury coronary artery, improve CFR and improve the coronary and renal haemodynamics after intravenous administration of rhBNP in pigs with AMI-ADHF.