and evaluate the change of coronary and renal haemodynamic parameters on York pig model on AMI-ADHF.

Methods 10 York pigs were selected in this trial. LAD was occluded by balloon which was placed on mid-distal for 30–45 min until ST segment elevation for 15 min. After deflating the balloon, the sterile microembolus were injected into LAD intermittently and injecting stopped until LVEDP = 18 mm Hg. The coronary pressure and flow velocity were recorded simultaneously at baseline, instant, 30 min and 60 min after AMI-ADHF model success. Average peak velocity (APV), coronary resistance and coronary flow reserve were obtained at basic and maximal hyperaemia. Renal artery angiography was performed and renal artery diameter and pressure was measured. Doppler flowwire was placed in renal artery for measure of APV of renal artery (APVr), renal artery vascular resistance and renal blood flow. At the same time ECG were recorded per 15 min. CK-MB and TnI were measured in all York pigs at baseline, 2 h, 4 h, 8 h, 12 h and 24 h after reperfusion. Cardiac ultrasonograph was performed to evaluate the heart function.

Results (1) According to the standards of AMI-ADHF, eight models were successfully established. (2) Basic and hyperaemia APV were all decreased signifi- cantly, they were lower than that of before AMI-ADHF coronary resistance was increased after AMI-ADHF model success. coronary flow reserve was lower than that of baseline. (3) Renal artery pressure has increased trend than baseline. renal artery vascular resistance was increased, APVr and renal blood flow was decreased than baseline.

Conclusion A stable experimental method of York pig model of AMI-ADHF was established successfully by coronary occlusion with balloon and injecting of microembolus in LAD. The method had advantages of closed chest, higher succeed rate and stability to those of drug induced, tachycardia-pacing induced, coronary artery ligation induced or microsphere injection alone.