left carotid artery endothelium. Another 6 rabbits were fed common diet, no injury. At the beginning and feeding for 12 weeks, TC, TG, HDL, LDL, FBC, fasting insulin and insulin sensitivity index were tested, analysis the correlation between HOMA-IR and lipid. After 12 weeks, OCT images of the left carotid artery were performed. After OCT, specimens were taken. Histology embedded in paraffin and HE stained was performed on arterial regions that was showed plaques in the OCT scan. OCT results were compared with pathological results.

Results

4 rabbits died, no death in normal. Feeding high fat diet for 12 weeks, their weight, TC, TG, LDL-C, HDL-C were significantly higher than normal (p<0.01). Though the difference of FBC was not statistically significant compared with normal (p=0.423), FSI, ISI and HOMA-IR was statistically significantly different (p=0.001, 0.000, 0.000 respectively). HOMA-IR and TG were positively correlated (r=0.52, p=0.059), and TC, HDL, LDL no significant correlation (r>0.05). OCT images of the left carotid artery in 22 rabbits were performed. 60 OCT images analysis after two experts’ discussions were held. There were 50 lipid-rich plaques, seven fibrous plaques and three suspected as calcified plaques. In addition, four thrombosis and intima tear in two sites were found. The pathological section was made in corresponding sites to OCT, HE staining. Comparing with the pathology results, OCT had high sensitivity and specificity for atherosclerotic plaque, respectively 96%, 89%. Plaque burden, external elastic membrane area and lumens area between the two atherosclerotic plaques, respectively 96%, 89%. Plaque burden, external elastic membrane area and lumens area between the two pathological sections in corresponding sites were compared with OCT. By comparing with histopathology, OCT had high sensitivity and specificity for characterizing atherosclerotic plaque.

Conclusion

OCT imaging can clearly visualise different types of atherosclerotic plaques and provide detailed information on plaque characteristics. Comparing with histopathology, OCT had high sensitivity and specificity for characterizing atherosclerotic plaque.

e0197

EFFECTS OF PRIOR DIFFERENT INTENSITIES EXERCISE ON INFARCT REGION FUNCTION AND ANGIOGENESIS OF LEFT VENTRICLE IN MYOCARDIAL INFARCTION RATS

doi:10.1136/hrt.2010.208967.197

1Yang-Yu Tang, 2Hua-Shan Hong, 1Yang-Long Chen, 1Xiao-Hong Lin, 1Jun-Hua Lin, 1Zhang Lin, 1Department of Cardiology of Union Hospital Affiliated to Fujian Medical University, 2Department of Geriatrics of Union Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian, China, 350001

Objective

Lifestyle interventions including exercise training have been shown to be a feasible option for the prevention and treatment of cardiovascular diseases. In this study, we investigated the effects of prior different intensities of exercise on infarct region and function and angiogenesis of the left ventricle (LV) in post-myocardial infarction (MI) rats, and further examined the expression of VEGF proteins in the left ventricle.

Methods

Male Sprague–Dawley rats were randomly assigned to six groups. The exercised rats underwent a daily 60-min treadmill exercise, 5 d/wk, for 6 wk. Different treadmill speeds were carried out in the high intensity exercise group (HIE-MI group, 50 m/min), moderate intensity exercise groups (MIE-Sh and MIE-MI groups, 21 m/min), low intensity exercise group (LIE-MI group, 12 m/min), respectively, whereas the untrained rats (Sed-Sh and Sed-MI groups) remained sedentary. At 6 wk, 24 h after the last treadmill exercise or the corresponding sedentary protocol, all rats underwent either acute MI (LIE-MI, MIE-MI, HIE-MI and Sed-MI groups) or sham MI operation (MIE-Sh and Sed-Sh groups). Then, all rats were sacrificed at 7d after recovery. Echocardiographic and haemodynamic measurements were performed at the end of the experimental protocol, and hearts were sampled for histological and molecular analysis. The infarct regions were analysed by using Masson’s trichrome staining; intramyocardial microvessels were detected by using Factor VIII-related antigen staining; and cardiac VEGF protein levels were determined by Western blotting analysis.

Results

Compared with Sed-Sh group, MIE-Sh group ameliorated left ventricular function and increased microvessels intensity, though the difference was not significant. Compared with Sed-MI group, MIE-MI and HIE-MI groups significantly reduced left ventricular infarct size, improved haemodynamic parameters, increased fractional shortening, scar thickness and microvessel density, but LIE-MI rats only had slight, and non-significant effect on these parameters. In addition, the differences between MIE-MI and LIE-MI rats were significant in haemodynamic parameters and microvessel density. Interestingly, compared with Sed-MI group, the exercised hearts displayed higher levels of VEGF protein in MIE-MI and HIE-MI groups. However, there was no significant difference between MIE-MI and HIE-MI groups.

Conclusion

Moderate intensity running exercise before acute MI improved LV function, reduced scar size, increased scar thickness and microvessel density in the post-MI rat. Additional higher intensity exercise could have little further effect. Low intensity exercise may be beneficial, but not sufficient to improve MI. Moderate and high intensity running upregulated the expression of VEGF protein, and contributed to the increased microvessels, which may partly benefit cardiac function after MI.

e0198

ACTIVITY OF CALCINEURIN NFAT SIGNALLING PATHWAY INVOLVING IN REMODELLING IN CTNNB1+/- MICE

doi:10.1136/hrt.2010.208967.198

Zhu Shushu, Ma Jinheng, Chen Xianjiang, Wu Hengfang, Yang Di, Zhang Jinan, Nanjing Medical University, China

Objectives

To construct a transgenic model of HCM overexpressing cTnI(R146W), observe the pathological change of this animal, and