and the expression of TNF-a and VCAM-1 in ileum were observed by H.E staining and immune chemical methods.

Results 12 animals in each group, 9 in group NT, 10 in group SC and 9 in group PC were successfully resuscitated; all animals were on mechanical ventilation for 2 to 4 h 5, 6 and 8 animals in each group respectively survived to the end of the experiment. The temperatures of tympanic and peritoneal cavity of animals in group NT were maintained in normal range. The tympanic temperature of animals in group SC and PC was arrived target temperatures at 29 ± 0.55 & 62 ± 0.27 mins. During the stage of maintenance of hypothermia, the tympanic and peritoneal temperatures of animals in group SC were in range 33 to 35°C, while the peritoneal temperatures of animals in group PC were in range 31 to 34°C, 1 to 2°C lower than the tympanic temperature. The scores of histological injured of ileum animals in group PC were in range 31 to 34

The differences among them were significantly, PC vs SC, p < 0.000; PC vs NT, p < 0.000; while SC vs NT, p = 0.30. The expression of TNF-a in ileum was 9.98 ± 1.79% in group NT, 5.87 ± 1.45% in group SC and 3.78 ± 0.53% in group PC, the differences among them were significantly. The phenomenon of the expression of VCAM-1 was little like the TNF-a, 3.78 ± 0.53% in group PC was significantly from the 2.59 ± 1.53% in group NT and 5.92 ± 1.06% in group SC.

Conclusion The neotype peritoneal cooling can improve the injured of ileum mucous beside quickly induce hypothermia after ROSC in rabbits.

e0224 **MODEL OF CARDIAC ARREST IN RATS BY TRANSCUTANEOUS ELECTRICAL EPICARDIUM STIMULATION**

Lin Ji-yan, Li Xin, Li Hui, Wei Hong-yan, Liu Rong, Hu Chun-lin, Dai Gang, Liao Xiao-xing

1Department of Emergency, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong, China; 2Key Lab on Assisted Circulation of Ministry of Health of Sun Yat-Sen University, Guangzhou, China

Objective To establish a new model of Cardiac Arrest (CA) in rats by transcutaneous electrical epicardium stimulation.

Methods Two acupuncture needles connected to the anode and cathode of a stimulator were transcutaneously inserted into the epicardium as electrodes. The stimulating current was steered to the epicardium and the stimulation was maintained for 5 min to induce CA. Cardiopulmonary resuscitation (CPR) was performed at 6 min after a period of nonintervention.

Results The success rate of induction was 12/20 at the current intensity of 1 mA; and reached 20/20 when the current intensity was increased to 2 mA. The average time from the electrical stimulation to CA induction was 5.10 (±2.81) s. When the electrical stimulation stopped, 18/20 rats had ventricular fibrillation and 2/20 rats had pulseless electrical activity. CPR was performed for averagely 207.4 (±148.8) s. The restoration of spontaneous circulation was 20/20. The death rate within 4 h after CA was 5/20, and the 72-h survival rate was 10/20. There were only two cases of complications, a minor muscle contraction and a minor lung lobe injury.

Conclusion The model of CA in rats induced by transcutaneous electrical epicardium stimulation is a stable model that requires low-intensity current and has fewer complications.