Abstracts

TREATMENT WITH A NEUTRALISING ANTI-MURINE INTERLEUKIN-17 ANTIBODY AFTER THE ONSET OF COXSACKIEVIRUS B3-INDUCED VIRAL MYOCARDITIS REDUCES MYOCARDIUM INFLAMMATION

Fan Yang, Weifeng Wu, Yuluan Yan, Yu Pang, Qing Kong. Department Of Cardiology, The First Affiliated Hospital Of Guangxi Medical University, Guangxi, China

Background Recently, some studies indicated that interleukin (IL)-17, known as a T cell (Th17)-derived proinflammatory cytokine, is the major mediator of tissue inflammation in inflammatory and autoimmune diseases. Viral myocarditis (VMC) is a T cell-mediated autoimmune disease, but the role for IL-17 in VMC is not well defined.

Results Using IL-17 monoclonal antibody (IL-17 mAb)-treated VMC mice, we tested the pathogenic role of IL-17 in the development of VMC. VMC mice were treated with monoclonal rat anti-murine IL-17 antibody (anti-IL-17) or rat IgG2a isotype control or phosphate-buffered solution 3 days after Coxsackievirus B3 (CVB3) injection. Normal mice without any manipulation were taken as normal control. The survival rates of mice were monitored and heart pathology was examined histologically. IL-17, IL-6, and TNFα mRNA of the myocardium were assessed by semi-quantitative RT-PCR. Systemic IL-17, IL-6, and TNFα level were measured by enzyme-linked immunosorbent assay, and local myocardium IL-17 expression was analysed using immunohistochemical staining. Flow cytometric analysis was used to evaluate the frequencies of Th17 subsets in CD4+T cells. Results showed that neutralisation of IL-17 with anti-IL-17 can ameliorate clinical symptoms, defer disease course, decrease serum IL-17 level, without declining the IL-17, IL-6 and TNFα mRNA transcript level and serum IL-6, TNFα level. The differentiation and proliferation of the Th17 cells were unchanged.

Conclusions Our data suggest that IL-17 is crucially involved in the pathogenesis of murine VMC, IL-17 inhibition might ameliorate the myocardium inflammation after the onset of VMC.