HCM 572±176, normal 745±138 p=0.01; exercise HCM 648±191,
normal 845±160 p=0.02). There was a significant correlation
between PFR and PCr/ATP at both rest (r=0.78, p=0.001) and
exercise (r=0.54, p=0.039). There was significantly reduced BOLD
SI response in HCM (10±11% vs normal, 18±14% and athletes
17±10%, p<0.0001) as well as MPRI (normal: 1.8±0.6; athletes:
2.0±0.9, HCM 1.3±0.6, p=0.001). There was a weak but significant
correlation between BOLD SI and MPRI (R=0.27, p<0.0001) and
between BOLD SI and end diastolic wall thickness (R=0.24,
p<0.0001). MPRI (β 0.2, p<0.0001) and wall thickness (β –0.2,
<0.0001) are independent predictors of BOLD SI. For β myosin
heavy chain mutation cohort (n=12), there was a significant
relationship between change in PCr/ATP and either BOLD SI (R=0.48,
p=0.05).

Conclusion During exercise, the pre-existing energetic de
ficit in HCM is further exacerbated, independent of hypertrophy. Addi
tionally, oxygenation is blunted during stress. This may lead to
acute derangement of energy dependent ion homeostasis during
acute stress, resulting in ventricular arrhythmias. We offer a possible
explanation for the high incidence of exercise related death in HCM
and suggest that treatments that optimise energetics may be
protective.

082 RIGHT VENTRICULAR HYPERTROPHY AND THE ATHLETE’S
HEART: UTILITY OF THE ECG AS A SCREENING TOOL
doi:10.1136/heartjnl-2012-301877b.82

A Zaidi,* S Ghani, H Raju, N Sheikh, A Cox, R Sharma, S Sharma. St.
George’s, University of London, London, UK

Introduction Right ventricular hypertrophy (RVH) is a manifesta
tion of various congenital and acquired cardiopulmonary disorders which
may lead to premature morbidity and mortality. Physiological RVH
is also reported among healthy athletes. European (ESC) guidelines
define ECG markers of RVH in young athletes as “uncommon and
training-unrelated,” warranting further investigation to exclude
“pathological RV dilatation or hypertrophy.” Conversely, recent
American guidelines state that evidence is lacking to support such a
strategy. There have been no studies to correlate ECG markers of
RVH with imaging data in young athletes.

Methods 214 asymptomatic, elite athletes underwent ECG and
transthoracic echocardiography. Sensitivity and specificity, as well as
positive and negative predictive values (PPV and NPV) of published
ECG criteria for RVH were assessed against echo findings (see
Abstract 082 table 1). RV free wall thickness (RVWT) was measured
in the subcostal plane as per ESC recommendations. RV end
diastolic area (RVEDA) was also calculated in each case.

Abstract 082 Table 1

<table>
<thead>
<tr>
<th></th>
<th>Prevalence (%)</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>PPV (%)</th>
<th>NPV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R(S(V1) >1</td>
<td>3.7</td>
<td>0.0</td>
<td>95.1</td>
<td>0.0</td>
<td>96.6</td>
</tr>
<tr>
<td>R(S(V5/V6) <1</td>
<td>1.4</td>
<td>0.0</td>
<td>98.6</td>
<td>0.0</td>
<td>96.7</td>
</tr>
<tr>
<td>R(V1) >7mm</td>
<td>8.9</td>
<td>14.3</td>
<td>91.9</td>
<td>5.3</td>
<td>97.1</td>
</tr>
<tr>
<td>R(V1) + S(V5/V6) >10.5mm</td>
<td>14.5</td>
<td>28.6</td>
<td>86.0</td>
<td>6.5</td>
<td>97.3</td>
</tr>
<tr>
<td>R(V1) >10mm</td>
<td>0.5</td>
<td>0.0</td>
<td>99.5</td>
<td>0.0</td>
<td>96.7</td>
</tr>
<tr>
<td>dP(V1)</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>0.0</td>
<td>96.7</td>
</tr>
<tr>
<td>Right axis deviation (>110°)</td>
<td>1.9</td>
<td>0.0</td>
<td>98.1</td>
<td>0.0</td>
<td>96.7</td>
</tr>
<tr>
<td>Right atrial enlargement (P-wave >2.5 mm)</td>
<td>0.9</td>
<td>0.0</td>
<td>99.0</td>
<td>0.0</td>
<td>96.7</td>
</tr>
</tbody>
</table>

Results Mean age was 21.4 years, 76.7% male. Mean RVWT was
3.8 mm (range 2–6 mm). Only 7/214 (3.3%) of athletes, all male,
demonstrated RVH on echo (RVWT ≥6 mm). Inter- and intra-
observer variability for RVWT measurements were 10% and 14%
respectively. All ECG criteria for RVH had low sensitivity and PPV
for echocardiographic RVH, although specificity and NPV were high.
The Sokolow-Lyon voltage criterion for RVH (R(V1) + S(V5/V6)
>10.5 mm), which is specifically mentioned in the ESC guidelines,
was seen in 14% of athletes. Mean RVEDA did not differ between
athletes with RVH on ECG and those without (both groups
27.3 cm², p=1.0).

Conclusions Published ECG criteria have an unacceptably low
correlation with echo evidence of RVH, which is rare in athletes.
Adherence to current ESC guidelines would result in a large number
of additional investigations, with the potential for undue distress,
disruption to training, and inappropriate resource utilisation. Our
data support American guidance that RVH voltage criteria violations
should not prompt further investigation, which may have significant
implications for the burden of testing required after ECG
screening of British athletes.
is a predominantly Echo-validated rapidly—derived surrogate of RV function. Correlations between RVEF and systolic changes in annulo-apical angles (AAAs) have not previously been evaluated.

Objective To assess the use of changes in AAAs and TAPSE as rapidly-derived surrogate markers of RV systolic function using CMR.

Methods We measured RV volumes from short-axis bSSFP stacks in patients undergoing clinically indicated CMR scans. RVEF was calculated from volumes derived by semi-automated endocardial contouring (QMass®MR 7.2). AAAs (α, β, θ angles—see Abstract 083 figure 1), subtended by a triangle connecting the medial and lateral extent of the tricuspid valve annulus and RV apex, and fractional changes in AAAs (ΔAAA/EDAAA×100), whereby ΔAAA/EDAAA was measured from end-diastolic (ED) and end-systolic (ES) 4chamber SSFP cine still frames. TAPSE was measured as the change in length of a line connecting the lateral tricuspid valve annulus with the RV apex from ED to ES. Parameters were compared with RVEF using Spearman rank correlations; ROC curves constructed to assess accuracy of the parameters in predicting an RVEF<50%.

Results 40 subjects were included: 10 normals, 10 mildly-impaired, 10 moderately-impaired, and 10 with severely-impaired RV systolic function. Median (25th–75th percentile) RVEF for each subgroup was 55.5% (51.4%–55.7%), 41.5% (38.1%–47.2%), 30.0% (21.7%–33.5%), and 15.8% (9.6%–21.2%), respectively. Correlations with RVEF: TAPSE (0.74, p<0.001), fractional changes of θ angle (0.64, p<0.001), β angle (−0.59, p<0.05), and θ angle, which had the highest correlation (−0.77, p<0.001). Smaller increases or a decrease in magnitude of the θ angle from ED to ES are associated with lower RVEFs, whereby a fractional θ angle change of ≥−25.5% predicts RVEF<50% [97% sensitivity, 91% specificity, AUC=0.98]. The cut-off for TAPSE is ≤1.87 cm [100% sensitivity, 82% specificity, AUC=0.98]. Intra- and inter-observer reproducibility is excellent as shown by intra-class correlation coefficients for TAPSE (0.98 and 0.87, respectively) and fractional θ angle change (0.96 and 0.94, respectively).

Conclusion Both fractional θ angle change and TAPSE strongly correlate with RVEF, and are accurate predictors of RVEF<50%. These measurements provide an excellent alternative to the more time-consuming derivation of RVEF obtained volumetrically by endocardial chamber tracing.

084 IN VIVO ASSESSMENT OF CELLULAR INFLAMMATION FOLLOWING ACUTE MYOCARDIAL INFARCTION

doi:10.1136/heartjnl-2012-301877b.84

1 T MacGillivray,* 2 J Richards, 1 N Joshi, 1 N Lang, 1 G Barnes, 1 S Semple, 1 P Henriksen, 2 G McKillop, 1 S Mirsadraee, 1 K Fox, 1 D E Newby, 1 S R Alam. 1 Edinburgh University, Edinburgh, UK; 2 Royal Infirmary of Edinburgh, Edinburgh, UK

Background Inflammation following myocardial infarction has detrimental effects on reperfusion, myocardial remodelling and left ventricular function. MRI using ultrasmall superparamagnetic particles of iron oxide (USPIO) can be used to detect cellular inflammation in tissues.

Methods 15 patients were recruited up to 5 days after ST-segment elevation myocardial infarction. Nine patients underwent cardiac MRI (3 Tesla) at baseline, and at 24 and 48 h following infusion of USPIO (4 mg/kg; Ferumoxytol, AMAG). Six control patients underwent the same scanning protocol without infusion of USPIO. T2*-weighted multi-gradient-echo sequences were acquired and R2* maps (inverse of T2*) were generated to assess USPIO accumulation. Baseline scans were registered to subsequent 24 and 48 h scans and the infarct zone was defined on Gadolinium-enhanced T2-weighted images. An “object map” was created that defined corresponding regions of interest (ROI) on all scans for each subject. The ROIs included infarct zone, peri-infarct zone, remote myocardium, liver, blood pool and skeletal muscle. The R2* values for each ROI was calculated.

Results In the control group, the R2* value in the infarct zone remained constant: baseline, 0.047 s⁻¹ (95% CI 0.035 to 0.059); 24 h, 0.048 s⁻¹ (95% CI 0.035 to 0.055) and 48 h, 0.040 s⁻¹ (95% CI 0.024

Abstract 084 Figure 1 In this subject, late gadolinium enhancement had revealed an infarct of the anterior left ventricular wall. Panels A and B are R2 acquisition images of the same subject taken on day 1 (A, pre-USPIO), and day 2 (B post-USPIO) in a patient given ferumoxytol. The white arrow indicates the area of infarction corresponding to the late gadolinium enhancement. In this area there is sequential higher uptake of USPIO as indicated by the red/green colour in this area. This is consistent with neutrophil and macrophage influx. Ferumoxytol is also taken up by the liver reticulo-endothelial system (grey arrow). These findings are confirmed by the quantitative analysis of the R2* signal (Panel C).

Abstract 083 Figure 2 Scatter graphs for fractional θ angle change and TAPSE, both plotted against RVEF. Dotted vertical lines represent the ROC cut-offs of RVEF<50%. Dashed horizontal lines represent cut-offs of ≥−25.5% and ≤1.87 cm for fractional θ angle change and TAPSE, respectively.